Intracellular manganese ions provide strong T1 relaxation in rat myocardium.
نویسندگان
چکیده
The efficacy of manganese ions (Mn2+) as intracellular (ic) contrast agents was assessed in rat myocardium. T1 and T2 and Mn content were measured in ventricular tissue excised from isolated perfused hearts in which a 5-min wash-in with 0, 30, 100, 300, or 1000 microM of Mn dipyridoxyl diphosphate (MnDPDP) was followed by a 15-min wash-out to remove extracellular (ec) Mn2+. An inversion recovery (IR) analysis at 20 MHz revealed two T1 components: an ic and short T1-1 (650-251 ms), and an ec and longer T1-2 (2712-1042 ms). Intensities were about 68% and 32%, respectively. Tissue Mn content correlated particularly well with ic R1-1. A two-site water-exchange analysis of T1 data documented slow water exchange with ic and ec lifetimes of 11.3 s and 7.5 s, respectively, and no differences between apparent and intrinsic relaxation parameters. Ic relaxivity induced by Mn2+ ions in ic water was as high as 56 (s mM)(-1), about 8 times and 36 times higher than with Mn2+ aqua ions and MnDPDP, respectively, in vitro. This value is as high as any reported to date for any synthetic protein-bound metal chelate. The increased rotational correlation time (tauR) between proton and electron (Mn2+) spins, and maintained inner-sphere water access, might make ic Mn2+ ions and Mn2+ -ion-releasing contrast media surprisingly effective for T1-weighted imaging.
منابع مشابه
Quantitative pancreatic β cell MRI using manganese-enhanced Look-Locker imaging and two-site water exchange analysis.
Pancreatic β-cell imaging would be useful in monitoring the progression of and therapies for diabetes. The purpose of this study was to develop and evaluate quantitative β-cell MRI using manganese (Mn(2+)) labeling of β cells, T1 mapping, and a two-site water exchange model. Normal, pharmacologically-treated, and severely diabetic mice underwent injection of MnCl(2). Pancreatic water proton T1 ...
متن کاملAssessing manganese efflux using SEA0400 and cardiac T1-mapping manganese-enhanced MRI in a murine model.
The sodium-calcium exchanger (NCX) is one of the transporters contributing to the control of intracellular calcium (Ca(2+)) concentration by normally mediating net Ca(2+) efflux. However, the reverse mode of the NCX can cause intracellular Ca(2+) concentration overload, which exacerbates the myocardial tissue injury resulting from ischemia. Although the NCX inhibitor SEA0400 has been shown to t...
متن کاملIn Vivo Brain MR Imaging at Subnanoliter Resolution: Contrast and Histology.
This article provides an overview of in vivo magnetic resonance (MR) imaging contrasts obtained for mammalian brain in relation to histological knowledge. Emphasis is paid to the (1) significance of high spatial resolution for the optimization of T1, T2, and magnetization transfer contrast, (2) use of exogenous extra- and intracellular contrast agents for validating endogenous contrast sources,...
متن کاملManganese-enhanced magnetic resonance imaging (MEMRI).
Manganese ion (Mn2+) is an essential metal that participates as a cofactor in a number of critical biological functions, such as electron transport, detoxification of free radicals and synthesis of neurotransmitters. Mn2+ can enter excitable cells using some of the same transport systems as Ca2+ and it can bind to a number of intracellular sites because it has high affinity for Ca2+ and Mg2+ bi...
متن کاملRepeated T1 mapping in brain following clinical dosage of Teslascan
Introduction Manganese enhances MRI is increasingly used for exploring neuronal activity, tracing white matter tracts and for structural delineation of normal and pathological brain anatomy in animals in vivo [1]. Manganese is a Ca analogue and enters the cells via many different Ca channels. Depending on mode of administration different features of brain structure and function can be depicted....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 52 3 شماره
صفحات -
تاریخ انتشار 2004