Noncommutative Manifolds from Graph and K-graph C * -algebras
نویسندگان
چکیده
In [PRen] we constructed smooth (1, ∞)-summable semfinite spectral triples for graph algebras with a faithful trace, and in [PRS] we constructed (k, ∞)-summable semifinite spectral triples for k-graph algebras. In this paper we identify classes of graphs and k-graphs which satisfy a version of Connes' conditions for noncommutative manifolds.
منابع مشابه
Semifinite Spectral Triples Associated with Graph C-algebras
We review the recent construction of semifinite spectral triples for graph C∗algebras. These examples have inspired many other developments and we review some of these such as the relation between the semifinite index and the Kasparov product, examples of noncommutative manifolds, and an index theorem in twisted cyclic theory using a KMS state. Alan L. Carey Mathematical Sciences Institute Aust...
متن کاملThe Erwin Schrr Odinger International Institute for Mathematical Physics K{theory of Noncommutative Lattices K-theory of Noncommutative Lattices
Noncommutative lattices have been recently used as nite topological approximations in quantum physical models. As a rst step in the construction of bundles and characteristic classes over such noncommutative spaces, we shall study their K-theory. We shall do it algebraically, by studying the algebraic K-theory of the associated algebras of`continuous functions' which turn out to be noncommutati...
متن کاملTHE NONCOMMUTATIVE GEOMETRY OF k-GRAPH C∗-ALGEBRAS
This paper is comprised of two related parts. First we discuss which k-graph algebras have faithful traces. We characterise the existence of a faithful semifinite lowersemicontinuous gauge-invariant trace on C∗(Λ) in terms of the existence of a faithful graph trace on Λ. Second, for k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)summable semifinite spectral triple. We ...
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملK-homology of Certain Group C*-algebras
Motivated by the search for new examples of “noncommutative manifolds”, we study the noncommutative geometry of the group C*-algebras of various discrete groups. The examples we consider are the infinite dihedral group Z×σZ2 and the semidirect product group Z×σZ. We present a unified treatment of the K-homology and cyclic cohomology of these algebras.
متن کامل