Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

نویسندگان

  • Marie Zgarbová
  • Michal Otyepka
  • Jirí Sponer
  • Pavel Hobza
  • Petr Jurecka
چکیده

The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals.

The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this "SAPT(KS)" methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v xc (r)→0 asymptotic limit is achiev...

متن کامل

Investigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study

In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...

متن کامل

Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches

Quantum mechanical (QM) calculations of noncovalent interactions are uniquely useful as tools to test and improve molecular mechanics force fields and to model the forces involved in biomolecular binding and folding. Because the more computationally tractable QM methods necessarily include approximations, which risk degrading accuracy, it is essential to evaluate such methods by comparison with...

متن کامل

Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients

A new ab initio pair potential for water was generated by fitting 2510 interaction energies computed by the use of symmetry-adapted perturbation theory ~SAPT!. The new site–site functional form, named SAPT-5s, is simple enough to be applied in molecular simulations of condensed phases and at the same time reproduces the computed points with accuracy exceeding that of the elaborate SAPT-pp funct...

متن کامل

An improved treatment of empirical dispersion and a many-body energy decomposition scheme for the explicit polarization plus symmetry-adapted perturbation theory (XSAPT) method.

We recently introduced a low-cost quantum chemistry method for computing intermolecular interactions, combining a monomer-based self-consistent field calculation (the "explicit polarization" method, XPol) with pairwise-additive symmetry adapted perturbation theory (SAPT). The method uses Kohn-Sham (KS) orbitals in the SAPT formalism but replaces the SAPT dispersion and exchange-dispersion terms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 35  شماره 

صفحات  -

تاریخ انتشار 2010