Markov Chain Monte Carlo Simulation Methods in Econometrics

نویسندگان

  • Siddhartha Chib
  • Edward Greenberg
چکیده

We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that are studied in econometrics. We include a discussion of some implementation issues, the use of the methods in connection with the EM algorithm, and how the methods can be helpful in model speci cation questions. Many of the applications of these methods are of particular interest to Bayesians, but we also point out ways in which frequentist statisticians may nd the techniques useful.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting and Comparison of Models for Multivariate Ordinal Outcomes

In this paper, we consider the analysis of models for univariate and multivariate ordinal outcomes in the context of the latent variable inferential framework of Albert and Chib (1993). We review several alternative modeling and identification schemes and evaluate how each aids or hampers estimation by Markov chain Monte Carlo simulation methods. For each identification scheme we also discuss t...

متن کامل

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Estimation of Hyperbolic Diffusion Using MCMC Method

In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts about asset returns documented in the financial econometrics literature, such as a slowly declining aut...

متن کامل

Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse

In this paper, we develop a simulation-based approach for two-stage stochastic programs with recourse. We construct an augmented probability model with stochastic shocks and decision variables. Simulating from the augmented probability model solves for the expected recourse function and the optimal first-stage decision. Markov chain Monte Carlo methods, together with ergodic averaging, provide ...

متن کامل

Mcmc Perspectives on Simulated Likelihood Estimation

A major stumbling block in multivariate discrete data analysis is the problem of evaluating the outcome probabilities that enter the likelihood function. Calculation of these probabilities involves high-dimensional integration, making simulation methods indispensable in both Bayesian and frequentist estimation and model choice. We review several existing probability estimators and then show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993