Regulating mammalian checkpoints through Cdc25 inactivation.

نویسندگان

  • Maddalena Donzelli
  • Giulio F Draetta
چکیده

Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both Schizosaccharomyces pombe and mammalian cells. In this study, we have inves...

متن کامل

Role for the PP2A/B56δ Phosphatase in Regulating 14-3-3 Release from Cdc25 to Control Mitosis

DNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. W...

متن کامل

Human Cdc14B Promotes Progression through Mitosis by Dephosphorylating Cdc25 and Regulating Cdk1/Cyclin B Activity

Entry into and progression through mitosis depends on phosphorylation and dephosphorylation of key substrates. In yeast, the nucleolar phosphatase Cdc14 is pivotal for exit from mitosis counteracting Cdk1-dependent phosphorylations. Whether hCdc14B, the human homolog of yeast Cdc14, plays a similar function in mitosis is not yet known. Here we show that hCdc14B serves a critical role in regulat...

متن کامل

The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle.

Major checkpoints that gate progression through the cell cycle function at the G1/S transition, entry into mitosis and exit from mitosis. Cells use feedback mechanisms to inhibit passage through these checkpoints in response to growth control signals, incomplete DNA replication or spindle assembly. In many organisms, transition points seem to involve regulation of the activity of cyclin-depende...

متن کامل

Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis.

The Cdc25 A phosphatase is required for the G1-S transition of the cell cycle and is overexpressed in human cancers. We found that it is ubiquitylated and rapidly degraded by the proteasome and that its levels increase from G1 until mitosis. By treating cells with the DNA synthesis inhibitor hydroxyurea, Cdc25 A rapidly decreased in abundance, and this was accompanied by an increase in Cdk2 pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2003