Iterative inversion of fuzzified neural networks
نویسندگان
چکیده
The inversion of a neural network is a process of computing inputs that produce a given target when fed into the neural network. The inversion algorithm of crisp neural networks is based on the gradient descent search in which a candidate inverse is iteratively refined to decrease the error between its output and the target. In this paper, we derive an inversion algorithm of fuzzified neural networks from that of crisp neural networks. First, we present a framework of learning algorithms of fuzzified neural networks and introduce the idea of adjusting schemes for fuzzy variables. Next, we derive the inversion algorithm of fuzzified neural networks by applying the adjusting scheme for fuzzy variables to total inputs in the input layer. Finally, we make three experiments on the parity-three problem; we examine the effect of the size of training sets on the inversion and investigate how the fuzziness of inputs and targets of training sets affects the inversion.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملIterative Inversion of Fuzzi ed Neural Networks
|The inversion of a neural network is a process of computing inputs which produce a given target when fed into the neural network. The inversion algorithm of crisp neural networks is based on the gradient descent search in which a candidate inverse is iteratively re ned to decrease the error between its output and the target. In this paper, we derive an inversion algorithm of fuzzi ed neural ne...
متن کاملIterative Neural Network Model Inversion
Recently model based techniques have become wide spread in solving measurement, control, identification, etc. problems. For measurement data evaluation and for controller design also the so called inverse models are of considerable interest. In this paper a technique to perform neural network inversion is introduced. For discrete time inputs the proposed method provides good performance if the ...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2000