Rejection of trace organic compounds by forward osmosis membranes: a literature review.

نویسندگان

  • Bryan D Coday
  • Bethany G M Yaffe
  • Pei Xu
  • Tzahi Y Cath
چکیده

To meet surging water demands, water reuse is being sought as an alternative to traditional water resources. However, contamination of water resources by trace organic compounds (TOrCs), including pharmaceuticals, personal care products, disinfection byproducts, and industrial chemicals is of increasing concern. These compounds are not readily removed by conventional water treatment processes and require new treatment technologies to enable potable water reuse. Forward osmosis (FO) has been recognized in recent years as a robust process suitable for the treatment of highly impaired streams and a good barrier to TOrCs. To date, at least 14 studies have been published that investigated the rejection of various TOrCs by FO membranes under a variety of experimental conditions. In this paper, TOrC rejection by FO has been critically reviewed, evaluating the effects of membrane characteristics and orientation, experimental scale and duration, membrane fouling, feed solution chemistry, draw solution composition and concentration, and transmembrane temperature on process performance. Although it is important to continue to investigate the removal of diverse TOrCs by FO, and especially with new FO membranes, it is critically important to adhere to standard testing conditions to enable comparison of results between studies. Likewise, feed concentration of TOrCs during FO testing must be environmentally relevant (most commonly 10-100 ng/L range for most wastewaters) and not excessively high, and in addition to testing TOrC rejection in clean feedwater, the effects of real water matrix and membrane fouling on TOrC rejection must be evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.

Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOr...

متن کامل

Mechanisms Involved in Osmotic Backwashing of Fouled Forward Osmosis (FO) Membranes

Organic matter leads to one of the biggest problems in membranes: fouling. Developing efficient cleaning processes is therefore crucial. This study systematically examines how alginic acid fouling formed under different physical and chemical conditions affect osmotic backwashing cleaning efficiency in forward osmosis (FO). The fouling layer thickness before and after osmotic backwashing was mea...

متن کامل

Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.

We compared the rejection behaviours of three hydrophobic trace organic contaminants, bisphenol A, triclosan and diclofenac, in forward osmosis (FO) and reverse osmosis (RO). Using erythritol, xylose and glucose as inert reference organic solutes and the membrane pore transport model, the mean effective pore size of a commercial cellulose-based FO membrane was estimated to be 0.74 nm. When NaCl...

متن کامل

Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate

One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 7  شماره 

صفحات  -

تاریخ انتشار 2014