Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana
نویسندگان
چکیده
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
منابع مشابه
Embryonic Development in Arabidopsis Thaliana: From the Zygote Division to the Shoot Meristem
Postembryonic organ formation of plants is fueled with cells from the stem cell niches in the shoot and root meristems. During the last two decades many players that regulate stem cell maintenance have been identified. With these factors in hand, the mechanisms establishing stem cell niches during embryo development can be addressed. Here we discuss current models of how the shoot meristem stem...
متن کاملThe AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana.
BACKGROUND AND AIMS The root meristem of the Arabidopsis thaliana mature embryo is a highly organized structure in which individual cell shape and size must be regulated in co-ordination with the surrounding cells. The objective of this study was to determine the role of the AUX1 LAX family of auxin import carriers during the establishment of the embryonic root cell pattern. METHODS The radic...
متن کاملThe Arabidopsis RETARDED ROOT GROWTH gene encodes a mitochondria-localized protein that is required for cell division in the root meristem.
To develop a growing root, cell division in the root meristem has to be properly regulated in order to generate or propagate new cells. How cell division is regulated in the root meristem remains largely unknown. Here, we report the identification and characterization of the Arabidopsis (Arabidopsis thaliana) RETARDED ROOT GROWTH (RRG) gene that plays a role in the regulation of root meristem c...
متن کاملExpression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis.
Arabidopsis (Arabidopsis thaliana) was transformed with a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein [roGFP]), with expression targeted to either the cytoplasm or to the mitochondria. Both the mitochondrial and cytosolic forms are oxidation-reduction sensitive, as indicated by a change in the ratio of 510 nm light (green light) emitted follo...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کامل