Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.

نویسندگان

  • S A Combes
  • T L Daniel
چکیده

The dynamic, three-dimensional shape of flapping insect wings may influence many aspects of flight performance. Insect wing deformations during flight are largely passive, and are controlled primarily by the architecture and material properties of the wing. Although many details of wing structure are well understood, the distribution of flexural stiffness in insect wings and its effects on wing bending are unknown. In this study, we developed a method of estimating spatial variation in flexural stiffness in both the spanwise and chordwise direction of insect wings. We measured displacement along the wing in response to a point force, and modeled flexural stiffness variation as a simple mathematical function capable of approximating this measured displacement. We used this method to estimate flexural stiffness variation in the hawkmoth Manduca sexta, and the dragonfly Aeshna multicolor. In both species, flexural stiffness declines sharply from the wing base to the tip, and from the leading edge to the trailing edge; this variation can be approximated by an exponential decline. The wings of M. sexta also display dorsal/ventral asymmetry in flexural stiffness and significant differences between males and females. Finite element models based on M. sexta forewings demonstrate that the measured spatial variation in flexural stiffness preserves rigidity in proximal regions of the wing, while transferring bending to the edges, where aerodynamic force production is most sensitive to subtle changes in shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.

During flight, many insect wings undergo dramatic deformations that are controlled largely by the architecture of the wing. The pattern of supporting veins in wings varies widely among insect orders and families, but the functional significance of phylogenetic trends in wing venation remains unknown, and measurements of the mechanical properties of wings are rare. In this study, we address the ...

متن کامل

A mechanical model for diversified insect wing margin shapes.

The wings in different insect species are morphologically distinct with regards to their size, outer contour (margin) shape, venation, and pigmentation. The basis of the diversity of wing margin shapes remains unknown, despite the fact that gene networks governing the Drosophila wing development have been well characterised. Among the different types of wing margin shapes, smoothly curved conto...

متن کامل

Flexural stiffness patterns of butterfly wings (Papilionoidea)

A flying insect generates aerodynamic forces through the active manipulation of the wing and the “passive” properties of deformability and wing shape. To investigate these “passive” properties, the flexural stiffness of dried forewings belonging to 10 butterfly species was compared to the butterflies’ gross morphological parameters to determine allometric relationships. The results show that fl...

متن کامل

Elastic deformation and energy loss of flapping fly wings.

During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces within the stroke cycle using a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2003