Two distinct mechanisms of nitric oxide-mediated neuronal cell death show thiol dependency.
نویسندگان
چکیده
To better understand the mechanism(s) underlying nitric oxide (. NO)-mediated toxicity, in the presence and absence of concomitant oxidant exposure, postmitotic terminally differentiated NT2N cells, which are incapable of producing. NO, were exposed to PAPA-NONOate (PAPA/NO) and 3-morpholinosydnonimine (SIN-1). Exposure to SIN-1, which generated peroxynitrite in the range of 25-750 nM/min, produced a concentration- and time-dependent delayed cell death. In contrast, a critical threshold concentration (>440 nM/min) was required for. NO to produce significant cell injury. Examination of cells by electron microscopy shows a largely necrotic injury after peroxynitrite exposure but mainly apoptotic-like morphology after. NO exposure. Cellular levels of reduced thiols correlated with cell death, and pretreatment with N-acetylcysteine (NAC) fully protected from cell death in either PAPA/NO or SIN-1 exposure. NAC given within the first 3 h posttreatment further delayed cell death and increased the intracellular thiol level in SIN-1 but not. NO-exposed cells. Cell injury from. NO was independent of cGMP, caspases, and superoxide or peroxynitrite formation. Overall, exposure of non-. NO-producing cells to. NO or peroxynitrite results in delayed cell death, which, although occurring by different mechanisms, appears to be mediated by the loss of intracellular redox balance.
منابع مشابه
Time dependency of the action of nitric oxide in lipopolysaccharide-interferon-gamma-induced neuronal cell death in murine primary neuron-glia co-cultures.
We investigated the time-dependency of the action of nitric oxide (NO) on glia-mediated neuronal cell death. Cortical neuron-glia co-cultures were treated with lipopolysaccharide and interferon gamma (LPS/IFNgamma). The production of NO was first detectable 9 h after the exposure to LPS/IFNgamma and increased for up to 48 h. A significant neuronal cell death was observed 36-48 h after treatment...
متن کاملNitric oxide mediated the effects of nebivolol in cardiorenal syndrome
Objective(s): Despite several proposed mechanisms for the pathophysiology of cardiorenal syndrome (CRS), the exact mechanism remains unclear. Nitrosative stress has been argued as a key mechanism recently. Nebivolol is a beta-blocker with nitric oxide (NO)-releasing effect. In the present study, NO-mediated effects of two different treatment regimes of nebivolol in CRS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملA novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint.
The susceptibility of neuronal cells to nitric oxide (NO) is a key issue in NO-mediated neurotoxicity. However, the underlying mechanism remains unclear. As a cyclic guanosine monophosphate (cGMP)-independent NO signaling pathway, S-nitrosylation (or S-nitrosation) has been suggested to occur as a post-translational modification in parallel with O-phosphorylation. The underlying mechanism of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2000