Polypyrrole-assisted oxygen electrocatalysis on perovskite oxides
نویسندگان
چکیده
Nitrogen-containing electrocatalysts, such as metal–nitrogen–carbon (M–N–C) composites and nitrogen-doped carbons, are known to exhibit high activities for an oxygen reduction reaction (ORR). Moreover, even if the mechanism by which nitrogen improves the activities is not completely understood, a strong electronic interaction between nitrogen and active sites has been found in these composites. Herein, we demonstrate a case in which nitrogen improves the electroactivity, but in the absence of a strong interaction with other components. The overpotentials of the ORR and oxygen evolution reaction (OER) on perovskite oxide catalysts were significantly reduced simply by mixing the catalyst particles with polypyrrole/carbon composites (pPy/C). Any strong interactions between pPy (a nitrogen-containing compound) and active sites of the catalysts are not confirmed. A scenario based on the sequential task allocation between pPy and oxide catalysts for the ORR was proposed: (1) molecular oxygen is incorporated into pPy as a form of superoxide (pPyO2 ), (2) the superoxide is transferred to the active sites of perovskite catalysts, and (3) the superoxide is completely reduced along the 4e ORR process.
منابع مشابه
Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.
Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the su...
متن کاملElectrocatalysis: Co‐doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction (Adv. Sci. 2/2016)
متن کامل
Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.
Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2Mn...
متن کاملExperimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides
In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...
متن کاملFactors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions
Triggering the redox reaction of oxygens has become essential for the development of (electro) catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively), CO or hydrocarbons oxidation, NO reduction and others. While the formation of lig...
متن کامل