A Review of Some Recent Results on Random Polynomials over R and over C
نویسنده
چکیده
This article is divided in two parts. In the first part we review some recent results concerning the expected number of real roots of random system of polynomial equations. In the second part we deal with a different problem, namely, the distribution of the roots of certain complex random polynomials. We discuss a recent result in this direction, which shows that the associated points in the sphere (via the stereographic projection) are surprisingly well-suited with respect to the minimal logarithmic energy on the sphere.
منابع مشابه
Co-centralizing generalized derivations acting on multilinear polynomials in prime rings
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...
متن کاملG-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules
Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کاملAsymptoties of Polynomials and Eigenfunctions
We review some recent results on asymptotic properties of polynomials of large degree, of general holomorphic sections of high powers of positive line bundles over Kahler manifolds, and of Laplace eigenfunctions of large eigenvalue on compact Riemannian manifolds. We describe statistical patterns in the zeros, critical points and L norms of random polynomials and holomorphic sections, and the i...
متن کامل