An Analysis of the Rule Weights and Fuzzy Reasoning Methods for Linguistic Rule Based Classification Systems Applied to Problems with Highly Imbalanced Data Sets

نویسندگان

  • Alberto Fernández
  • Salvador García
  • Francisco Herrera
  • María José del Jesús
چکیده

In this contribution we carry out an analysis of the rule weights and Fuzzy Reasoning Methods for Fuzzy Rule Based Classification Systems in the framework of imbalanced data-sets with a high imbalance degree. We analyze the behaviour of the Fuzzy Rule Based Classification Systems searching for the best configuration of rule weight and Fuzzy Reasoning Method also studying the cooperation of some pre-processing methods of instances. To do so we use a simple rule base obtained with the Chi (and co-authors’) method that extends the wellknown Wang and Mendel method to classification problems. The results obtained show the necessity to apply an instance preprocessing step and the clear differences in the use of the rule weight and Fuzzy Reasoning Method. Finally, it is empirically proved that there is a superior performance of Fuzzy Rule Based Classification Systems compared to the 1-NN and C4.5 classifiers in the framework of highly imbalanced data-sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه‌روش جدید مبتنی‌بر برنامه‌نویسی ژنتیک برای وزن‌دهی قوانین فازی در طبقه‌بندی نامتوازن

In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets

In the field of classification problems, we often encounter classes with a very different percentage of patterns between them, classes with a high pattern percentage and classes with a low pattern percentage. These problems receive the name of “classification problemswith imbalanced data-sets”. In this paperwe study the behaviour of fuzzy rule based classification systems in the framework of im...

متن کامل

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007