WCB is a C2 domain protein defining the plasma membrane - sub-pellicular microtubule corset of kinetoplastid parasites.
نویسندگان
چکیده
WCB is a protein that locates between the inner face of the plasma membrane and the sub-pellicular corset of microtubules in Trypanosoma brucei. We provide the molecular identity of WCB and bioinformatic analysis suggests that it possesses a C2 domain implicated in membrane/protein interactions and a highly charged region possessing characteristics of a putative tubulin-binding domain. Functional analyses via RNA interference (RNAi) depletion show that WCB is essential for cell morphogenesis. Depletion results in gross abnormalities in cell shape, mainly at the cytoskeletal/plasma membrane dynamic posterior end of the trypanosome. Failures in cytokinesis and zoid production are also evident. Furthermore, electron microscopy reveals that RNAi-induced trypanosomes lose local plasma membrane to microtubule corset integrity.
منابع مشابه
The Cooperative Roles of Two Kinetoplastid-Specific Kinesins in Cytokinesis and in Maintaining Cell Morphology in Bloodstream Trypanosomes
The cytoskeleton of Trypanosoma brucei, a unicellular eukaryote and a parasitic protozoan, is defined by the subpellicular microtubule corset that is arranged underneath the plasma membrane. We recently identified two orphan kinesins, TbKIN-C and TbKIN-D, that cooperate to regulate the organization of the subpellicular microtubule corset and thereby maintain cell morphology in the procyclic for...
متن کاملAn orphan kinesin in trypanosomes cooperates with a kinetoplastid-specific kinesin to maintain cell morphology by regulating subpellicular microtubules.
Microtubules are a vital part of the cytoskeleton of eukaryotic cells and are involved in various cellular processes. The cytoskeleton of Trypanosoma brucei is characterized by an array of subpellicular microtubules and is essential for maintenance of cell shape and polarity, but little is known about the regulation of the assembly and organization of the subpellicular microtubule corset. Here,...
متن کاملCytoskeletal Association Is Important for Differential Targeting of Glucose Transporter Isoforms in Leishmania
The major glucose transporter of the parasitic protozoan Leishmania enriettii exists in two isoforms, one of which (iso-1) localizes to the flagellar membrane, while the other (iso-2) localizes to the plasma membrane of the cell body, the pellicular membrane. These two isoforms differ only in their cytosolic NH2-terminal domains. Using immunoblots and immunofluorescence microscopy of detergent-...
متن کاملBiogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B
Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveola...
متن کاملFrom the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality.
Members of the Trypanosomatidae family comprise a large number of species that are causative agents of important diseases such as sleeping sickness, Chagas' disease and Leishmaniasis. These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protist
دوره 159 1 شماره
صفحات -
تاریخ انتشار 2008