The Potential of Time Series Merged from Landsat-5 TM and HJ-1 CCD for Crop Classification: A Case Study for Bole and Manas Counties in Xinjiang, China
نویسندگان
چکیده
Time series data capture crop growth dynamics and are some of the most effective data sources for crop mapping. However, a drawback of precise crop classification at medium resolution (30 m) using multi-temporal data is that some images at crucial time periods are absent from a single sensor. In this research, a medium-resolution, 15-day time series was obtained by merging Landsat-5 TM and HJ-1 CCD data (with similar radiometric performances in multi-spectral bands). Subsequently, optimal temporal windows for accurate crop mapping were evaluated using an extension of the Jeffries–Matusita (JM) distance from the merged time series. A support vector machine (SVM) was then used to compare the classification accuracy of the optimal temporal windows and the entire time series. In addition, different training sample sizes (10% to 90% of the entire training sample in 10% increments; five repetitions for each sample size) were used to investigate the stability of optimal temporal windows. The results showed that time series in optimal temporal windows can achieve high classification accuracies. The optimal temporal windows were robust when the training sample size was sufficiently large. However, they OPEN ACCESS Remote Sens. 2014, 6 7611 were not stable when the sample size was too small (i.e., less than 300) and may shift in different agro-ecosystems, because of different classes. In addition, merged time series had higher temporal resolution and were more likely to comprise the optimal temporal periods than time series from single-sensor data. Therefore, the use of merged time series increased the possibility of precise crop classification.
منابع مشابه
Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China
Most methods used for crop classification rely on the ground-reference data of the same year, which leads to considerable financial and labor cost. In this study, we presented a method that can avoid the requirements of a large number of ground-reference data in the classification year. Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the dominant ...
متن کاملReconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring
With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion...
متن کاملDevelopment of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China
Time series remote sensing products with both fine spatial and dense temporal resolutions are urgently needed for many earth system studies. The development of small satellite constellations with identical sensors affords novel opportunities to provide such kind of earth observations. In this paper, a new dense time series 30-m image product was proposed respectively based on an 8-day, 16-day a...
متن کاملComparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China
A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014