S-Nitrosylated Human Serum Albumin-mediated Cytoprotective Activity Is Enhanced by Fatty Acid Binding*
نویسندگان
چکیده
Binding of oleate to S-nitrosylated human serum albumin (SNO-HSA) enhances its cytoprotective effect on liver cells in a rat ischemia/reperfusion model. It enhances the antiapoptotic effect of SNO-HSA on HepG2 cells exposed to anti-Fas antibody. To identify some of the reasons for the increased cytoprotective effects, additional experiments were performed with glutathione and HepG2 cells. As indicated by 5,5'-dithiobis-2-nitrobenzoic acid binding, the addition of oleate increased the accessibility of the single thiol group of albumin. Binding of increasing amounts of oleate resulted in increasing and more rapid S-transnitrosation of glutathione. Likewise, binding of oleate, or of a mixture of endogenous fatty acids, improved S-denitrosation of SNO-HSA by HepG2 cells. Oleate also enhanced S-transnitrosation by HepG2 cells, as detected by intracellular fluorescence of diaminofluorescein-FM. All of the S-transnitrosation caused by oleate binding was blocked by filipin III. Oleate also increased, in a dose-dependent manner, the binding of SNO-HSA labeled with fluorescein isothiocyanate to the surface of the hepatocytes. A model in two parts was worked out for S-transnitrosation, which does not involve low molecular weight thiols. Fatty acid binding facilitates S-denitrosation of SNO-HSA, increases its binding to HepG2 cells and greatly increases S-transnitrosation by hepatocytes in a way that is sensitive to filipin III. A small nitric oxide transfer takes place in a slow system, which is unaffected by fatty acid binding to SNO-HSA and not influenced by filipin III. Thus, fatty acids could be a novel type of mediator for S-transnitrosation.
منابع مشابه
S-Nitrosylation of human variant albumin Liprizzi (R410C) confers potent antibacterial and cytoprotective properties.
The S-nitrosylated forms of certain proteins such as albumin have been thought to be circulating endogenous reservoirs of nitric oxide (NO) and may have potential as NO donors in therapeutic applications. In this study, we investigated the characteristics of R410C, a genetic variant of human serum albumin with two free thiols at positions 34 (Cys-34) and 410 (Cys-410), as a NO carrier via S-nit...
متن کاملNitrosylated bovine serum albumin derivatives as pharmacologically active nitric oxide congeners.
Although nitrosothiols have been suggested to act as regulators of cell (patho)physiology, little is known about the pharmacology of nitrosylated proteins as nitric oxide (NO.) congeners. We describe the molecular consequences of nitrosylating bovine serum albumin (BSA) at multiple specific sites and demonstrate that the product S-nitrosoproteins exert NO.-like activity. The content of nucleoph...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملFluorescent Determination of Secretory Phospholipase T (sPLA2)- Mediated Human Serum Albumin Binding Activity with Membrane Phospholipids and Fatty Acids
Human serum albumin (HSA) is a complex protein with multiple functions and plays a key role in organ system homeostasis. Changes in albumin levels are associated with worsened outcome in critical illness. However, serum albumin functional activities cannot be easily determined to assess its capacities in illness. Two real-time and sensitive fluorescent liposome assays were developed to determin...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کامل