Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing
نویسندگان
چکیده
Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m(-2) at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics.
منابع مشابه
High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and...
متن کاملOptical and structural investigation on InGaN/GaN multiple quantum well light-emitting diodes grown on sapphire by metalorganic chemical vapor deposition
InGaN/GaN multiple quantum well (MQW) light emitting diode (LED) structures with blue and green light emissions have been grown on sapphire substrates by metalorganic chemical vapor deposition. They are investigated by high-resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) and photoluminescence excitation (PLE). HR-XRD showe...
متن کاملHighly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials
This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor w...
متن کاملWhole device printing for full colour displays with organic light emitting diodes
Whole device printing is presented for realizing full colour displays with red (R), green (G) and blue (B) organic light emitting diodes (OLEDs). In this process, the whole OLED structure is transferred from a patterned mould to a glass substrate. Therefore, a simple step and repeat of the transfer of each of R, G and B OLED for RGB pixels completes the fabrication of the full colour display ov...
متن کاملInkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays
Adv. Mater. 2009, 21, 1–5 2009 WILEY-VCH Verlag Gmb We demonstrate print-deposition of high resolution, patterned, multicolored thin films of luminescent colloidal quantum dot (QD)-polymer composites and use the printed patterns in fabricating robust, bright, full-color AC-driven displays. The benefits of AC electroluminescent (EL) displays include simple, low-cost fabrication and high reliabil...
متن کامل