Intelligent Hybrid Controller for Identification and Control of Micro Permanent-Magnet Synchronous Motor Servo Drive System Using Petri Recurrent-Fuzzy-Neural-Network
نویسنده
چکیده
Abstract: This paper proposes an intelligent hybrid control system (IHCS) for identification and control of micro-permanent-magnet synchronous motor (micro-PMSM) servo drive to achieve high precision tracking performance. The proposed control scheme incorporates a computed torque controller (CTC) based on the sliding-mode technique, a Petri recurrent-fuzzy-neural-network (PRFNN) controller (PRFNNC) and a PRFNN identifier (PRFNNI). First, a CTC is designed to stabilize the micro-PMSM servo drive system. However, particular information about the uncertainties of the micro-PMSM servo drive is required in the CTC law so that the corresponding control performance can not influenced seriously. Then, to improve the robustness of the servo drive system an IHCS is proposed. In the IHCS, the PRFNNC is used as the main tracking controller to mimic the CTC law and to preserve favorable model-following characteristics while the PRFNNI is utilized to identify the sensitivity information of the micro-PMSM servo drive system required for the PRFNNC. The online adaptive control laws are derived based on the Lyapunov stability theorem, the Taylor linearization technique and the back propagation method so that the stability of the micro-PMSM servo drive system can be guaranteed under occurrence of servo drive uncertainties. A computer simulation is developed to demonstrate the effectiveness of the proposed IHCS. The dynamic performance of the servo drive has been studied under load changes and parameters uncertainties. Accurate tracking response can be obtained due to the powerful online learning capability of PRFNN. In addition, the position tracking performance is significantly improved using the proposed IHCS and robustness to external disturbances can be obtained as well. Finally, the simulation results confirm that the IHCS grants robust performance and precise response regardless of load disturbances and micro-PMSM servo drive system parameter uncertainties.
منابع مشابه
Robust Petri Recurrent-Fuzzy-Neural-Network Sliding-Mode Control for Micro-PMSM Servo Drive System
This paper proposes an intelligent hybrid control system (IHCS) for identification and control of micro-permanent-magnet synchronous motor (micro-PMSM) servo drive to achieve high precision tracking performance. Based on the principle of computed torque control (CTC), a position tracking controller is designed and analyzed. Moreover, to relax the requirement of the lumped uncertainty, an IHCS i...
متن کاملHigh-Precision Intelligent Adaptive Backstepping H∞ Control for PMSM Servo Drive Using Dynamic Recurrent Fuzzy-Wavelet- Neural-Network
This paper proposes a high-precision intelligent adaptive backstepping control system (HPIABCS) for the position control of permanent-magnet synchronous motor (PMSM) servo drive. The HPIABCS incorporates an ideal backstepping controller, a dynamic recurrent-fuzzy-wavelet-neural-network (DRFWNN) uncertainty observer and a robust H∞ controller. First, a backstepping position controller is designe...
متن کاملAdaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition
Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...
متن کاملDSP-Based Intelligent Adaptive Control System Using Recurrent Functional-Link-Based Petri Fuzzy-Neural-Network for Servo Motor Drive
This paper presents an intelligent adaptive control system (IACS) using a recurrent functional-linkbased Petri fuzzy-neural-network (RFLPFNN) for induction motor (IM) servo drive to achieve high dynamic performance. The proposed IACS comprises a RFLPFNN controller and a robust controller. The RFLPFNN controller is used as the main tracking controller to mimic an optimal control law while the ro...
متن کاملHybrid Fuzzy Algorithm for the Novel Yokeless Axial Flux-Switching Permanent-Magnet Motor
Flux switching permanent magnet synchronous motor (FMSM) has the characteristics such as large output torque, fast speed response and high reliability, so it can be widely used in the field of high-performance and high precision control.In the permanent magnet synchronous motor control system, the speed loop usually adopts the PI control algorithm. Although the PI control algorithm is relativel...
متن کامل