Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.

نویسندگان

  • Hui Wang
  • Haywood D Laughinghouse
  • Matthew A Anderson
  • Feng Chen
  • Ernest Willliams
  • Allen R Place
  • Odi Zmora
  • Yonathan Zohar
  • Tianling Zheng
  • Russell T Hill
چکیده

Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Nitrogen Source on Biomass and Lipid Production of a Marine Microalga, Nannochloropsis oceanica IMET1

The effects of the nitrogen sources sodium nitrate (NaNO3) and urea (CH4N2O) on growth, lipid production, and fatty acid composition of Nannochloropsis oceanica IMET1 were investigated. Nitrogen source affected cell density, dry cell weight, and lipid production. Cells grown in the nitrate medium increased dry cell weight and lipid weight in comparison with cells grown in the urea medium. The c...

متن کامل

Comparison of the Growth Performance of Nannochloropsis oceanica IMET1 and Nannochloropsis gaditana CCMP526 under Various Culture Conditions

We studied the growth performance of Nannochloropsis oceanica IMET1 under various culture conditions, including different CO2 concentrations, temperature, or light intensities compared with that of N. gaditana CCMP526. When CO2 concentrations were changed, the growth rates of N. oceanica IMET1 and N. gaditana CCMP526 were the highest at a CO2 concentration of 2 vol%. N. oceanica IMET1 had a hig...

متن کامل

Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery.

The Nannochloropsis genus contains oleaginous microalgae that have served as model systems for developing renewable biodiesel. Recent genomic and transcriptomic studies on Nannochloropsis species have provided insights into the regulation of lipid production in response to nitrogen stress. Previous studies have focused on the responses of Nannochloropsis species to short-term nitrogen stress, b...

متن کامل

Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase...

متن کامل

A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica

BACKGROUND Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, Nannochloropsis oceanica, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 5  شماره 

صفحات  -

تاریخ انتشار 2012