Instability of the Hocking–Stewartson pulse and its implications for three-dimensional Poiseuille flow

نویسنده

  • Thomas J. Bridges
چکیده

The linear stability problem for the Hocking–Stewartson pulse, obtained by linearizing the complex Ginzburg–Landau (cGL) equation, is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to stability exponents. A numerical algorithm based on the compound matrix method is developed for computing the Evans function. Using values in the cGL equation associated with spanwise modulation of plane Poiseuille flow, we show that the Hocking–Stewartson pulse associated with points along the neutral curve is always linearly unstable due to a real positive eigenvalue. Implications for the spanwise structure of nonlinear Poiseuille problem between parallel plates are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The instability of the Hocking-Stewartson pulse and its geometric phase in the Hopf bundle

This work demonstrates an innovative numerical method for counting and locating eigenvalues with the Evans function. Utilizing the geometric phase in the Hopf bundle, the technique calculates the winding of the Evans function about a contour in the spectral plane, describing the eigenvalues enclosed by the contour for the Hocking-Stewartson pulse of the complex Ginzburg-Landau equation. Locatin...

متن کامل

A Numerical Study of Drop Motion in Poiseuille Flow

The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...

متن کامل

A Numerical Study of Drop Motion in Poiseuille Flow

The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...

متن کامل

A Numerical Investigation on the Unstable Flow in a Single Stage of an Axial Compressor

An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws (MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the e...

متن کامل

Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation

In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001