On a Powerful Class of Non-universal P Systems with Active Membranes
نویسندگان
چکیده
We prove that uniform and semi-uniform families of P systems with active membranes using only communication and nonelementary division rules are not computationally universal. However, they are powerful enough to solve exactly the problems solvable by Turing machines operating in time and space that are “tetrational” (i.e., bounded by a stack of exponentials of polynomial height) with respect to the size of the input.
منابع مشابه
P Systems with Active Membranes: Attacking NP-Complete Problems
P systems are parallel Molecular Computing models based on processing mul-tisets of objects in cell-like membrane structures. Various variants were already shown to be computationally universal, equal in power to Turing machines. In this paper one proposes a class of P systems whose membranes are the main active components, in the sense that they directly mediate the evolution and the communica...
متن کاملTheoretical Performance Evaluation of Inorganic (Non Pd-Based) Membranes for Hydrogen Separation
The aim of this work theoretical study is to theoretically investigate a inorganic membrane assisted purifcation process of an H2-rich stream derived from a conventional methanol steam reforming stage. In particular, a black-box model for multicomponent gas mixture purifcation is dev...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملOn the Computational Efficiency of Polarizationless Recognizer P Systems with Strong Division and Dissolution
Recognizer P systems with active membranes have proven to be very powerful computing devices, being able to solve NP-complete decision problems in a polynomial time. However such solutions usually exploit many powerful features, such as electrical charges (polarizations) associated to membranes, evolution rules, communication rules, and strong or weak forms of division rules. In this paper we c...
متن کاملPolysulfone Ultrafiltration Membranes Modified with Carbon-Coated Alumina Supported NiTiO2 Nanoparticles for Water Treatment: Synthesis, Characterization and Application
This paper reports on the synthesis and characterisation of polysulfone (PSf) ultrafltration (UF) membranes modifed with carbon coated alumina Ni-doped titanium dioxide (CCA/Ni-TiO2) nanoparticles. The syntheses of the membranes was carried out using the phase inversion process. The ...
متن کامل