Genetic Parameter Identification of the Doyle-Fuller-Newman Model from Experimental Cycling of a LiFePO4 Battery
نویسندگان
چکیده
This paper examines the identification of the parameters of the Doyle-Fuller-Newman electrochemistry-based Lithium-ion battery model from voltage and current cycling data. The battery used in this study has a lithium iron phosphate cathode chemistry intended for high-power applications such as plug-in hybrid electric vehicles. The variables optimized for model identification include parameterizations of the model’s anode equilibrium potential, cathode equilibrium potential, and solution conductivity. A genetic algorithm is used to optimize these model parameters against experimental data. The resulting identified model fits two experimental data sets used for system identification, as well as separate validation data sets corresponding to five different vehicle drive cycles. These drive cycles simulate the current a battery would undergo while used in a plug-in hybrid vehicle battery pack. The accuracy of the parameters is investigated using various validation data sets. This is believed to be the first attempt at fitting nearly all of the parameters and functions in the DFN model simultaneously using only voltage and current data. Computational logistics of using a genetic algorithm to identify 88 parameters of an electrochemistry-based model for 7.5 hours of cycling data are discussed. In addition, a detailed analysis of local parameter identifiability is presented.
منابع مشابه
Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملCharacterising Lithium-Ion Battery Degradation through the Identification and Tracking of Electrochemical Battery Model Parameters
Lithium-ion (Li-ion) batteries undergo complex electrochemical and mechanical degradation. This complexity is pronounced in applications such as electric vehicles, where highly demanding cycles of operation and varying environmental conditions lead to non-trivial interactions of ageing stress factors. This work presents the framework for an ageing diagnostic tool based on identifying and then t...
متن کاملBattery Health Diagnostics Using Retrospective-cost Subsystem Identification: Sensitivity to Noise and Initialization Errors
Health management of Li-ion batteries requires knowledge of certain battery internal dynamics (e.g., lithium consumption and film growth at the solid-electrolyte interface) whose inputs and outputs are not directly measurable with noninvasive methods. Therefore, identification of those dynamics can be classified as an inaccessible subsystem identification problem. To address this problem, the r...
متن کاملMultiscale Characterization of Degradation Mechanism in LiFePO4 Battery Cathodes with Prolonged Electrochemical Cycling
The scope of the current research is to characterize aging mechanisms in LiFePO4 battery cathodes at the nanometer length scale. For this purpose, we wish to use Electron Energy Loss Spectroscopy (EELS) in the low loss regime in the Transmission Electron Microscope (TEM) to identify and quantify the phases formed in the cathode as the battery is discharged. The above phase identification and qu...
متن کاملA Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles
Battery energy storage management for electric vehicles (EV) and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011