Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and computational analysis at the laboratory scale

نویسندگان

  • M. S. Day
  • J. B. Bell
  • R. K. Cheng
  • S. Tachibana
  • V. E. Beckner
  • M. J. Lijewski
چکیده

One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential Diffusion Effects on the Burning Rate of Interacting Turbulent Premixed Hydrogen-Air Flames

The upstream interaction of twin premixed hydrogen-air flames in 2-D turbulence is studied using direct numerical simulations with detailed chemistry. The primary objective is to determine the effect of flame stretch on the overall burning rate during various stages of the interaction. Preferential diffusion effects are accounted for by varying the equivalence ratio from symmetric rich-rich to ...

متن کامل

Numerical simulation of Lewis number effects on lean premixed turbulent flames

A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagat...

متن کامل

Influence of Preferential Diffusion in Turbulent Lean Premixed Hydrogen-Rich Syngas Spherical Flames at Elevated Pressure

The objective of this work was to investigate the influence of preferential diffusion on flame structure and propagation of lean-premixed hydrogen-carbon monoxide syngas-air flame at elevated pressure using direct numerical simulation (DNS) and detailed chemistry. The physical problem investigated is lean-premixed H2/CO outwardly propagating turbulent spherical flame at constant pressure of 4ba...

متن کامل

Research on Cellular Instabilities of Lean Premixed Syngas Flames under Various Hydrogen Fractions Using a Constant Volume Vessel

An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0) premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The resu...

متن کامل

Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime

The response of lean (φ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009