And Damien Pous A

نویسنده

  • Damien Pous
چکیده

Kleene algebra axioms are complete with respect to both language models and binary relation models. In particular, two regular expressions recognise the same language if and only if they are universally equivalent in the model of binary relations. We consider Kleene allegories, i.e., Kleene algebras with two additional operations and a constant which are natural in binary relation models: intersection, converse, and the full relation. While regular languages are closed under those operations, the above characterisation breaks. Putting together a few results from the literature, we give a characterisation in terms of languages of directed and labelled graphs. By taking inspiration from Petri nets, we design a finite automata model, Petri automata, allowing to recognise such graphs. We prove a Kleene theorem for this automata model: the sets of graphs recognisable by Petri automata are precisely the sets of graphs definable through the extended regular expressions we consider. Petri automata allow us to obtain decidability of identity-free relational Kleene lattices, i.e., the equational theory generated by binary relations on the signature of regular expressions with intersection, but where one forbids unit. This restriction is used to ensure that the corresponding graphs are acyclic. We actually show that this decision problem is ExpSpace-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced coalgebraic bisimulation

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

De la KAM avec un Processus d'Ordre Supe'rieur

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Algèbres de relations : axiomatisations et algorithmes

procédures permettant de décider l'égalité ou l'inclusion de relations. Après avoir défini formellement le calcul des relations, nous nous concen-trons sur deux fragments particulièrement importants et bien étudiés dans la littérature : les algèbres de Kleene et les allégories. Enfin, nous montrons comment réunir ces deux fragments, ce qui nous mène à plusieurs questions ouvertes.

متن کامل

Cardinalities of Finite Relations in Coq (Rough Diamond)

We present an extension of a Coq library for relation algebras, where we provide support for cardinals in a point-free way. This makes it possible to reason purely algebraically, which is well-suited for mechanisation. We discuss several applications in the area of graph theory and program verification.

متن کامل

A Distribution Law for CCS and a New Congruence Result for the pi-Calculus

We give an axiomatisation of strong bisimilarity on a small fragment of CCS that does not feature the sum operator. This axiomatisation is then used to derive congruence of strong bisimilarity in the finite π-calculus in absence of sum. To our knowledge, this is the only nontrivial subcalculus of the π-calculus that includes the full output prefix and for which strong bisimilarity is a congruence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017