Mechanistic Study for Facile Electrochemical Patterning of Surfaces with Metal Oxides.
نویسندگان
چکیده
Reactive interface patterning promoted by lithographic electrochemistry serves as a method for generating submicrometer scale structures. We use a binary-potential step on a metallic overlayer on silicon to fabricate radial patterns of cobalt oxide on the nanoscale. The mechanism for pattern formation has heretofore been ill-defined. The binary potential step allows the electrochemical boundary conditions to be controlled such that initial conditions for a scaling analysis are afforded. With the use of the scaling analysis, a mechanism for producing the observed pattern geometry is correlated to the sequence of electrochemical steps involved in the formation of the submicrometer structures. The patterning method is facile and adds to electrochemical micromachining techniques employing a silicon substrate.
منابع مشابه
Facile, rapid, and large-area periodic patterning of semiconductor substrates with submicron inorganic structures.
The development of high-throughput and scalable techniques for patterning inorganic structures is useful for the improved function and efficiency of photonic and energy conversion devices. Here we demonstrate a facile and rapid electrochemical method for patterning periodic metallic and nonmetallic submicron structures over large areas. Si substrates have been patterned with arrays of periodica...
متن کاملElectrochemical Preparation and Characterization of Mn5O8 Nanostructures
Electrochemical synthesis followed by heat-treatment is a facile and easy method for preparation of nanostructured metal oxides. Herein we report nanostructured Mn5O8 prepared through pulse cathodic deposition followed by heat-treatment for the first time. For the preparation of Mn5O8 nanorods, pulse cathodic electrodeposition was first done from 0.005M Mn(NO3)2 at the current density of 5 mA c...
متن کاملN-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction
Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stab...
متن کاملBiomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.
A method for preparing multiphasic hollow rods consisting of nanoscale Sn-based materials through a thermochemical reduction process involving bacteria and Sn oxides is reported. This facile process involves the bacteria-mediated synthesis of SnO(2) nanoparticles that form on bacterial surfaces used as templates at room temperature. The subsequent template removal proceeds via a reduction of th...
متن کاملA bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction.
Experimental evidence is presented, demonstrating the feasibility of a surface-patterning strategy that allows stepwise electrochemical generation and subsequent in situ metallization of patterns of carboxylic acid functions on the outer surfaces of highly ordered OTS monolayers assembled on silicon or on a flexible polymeric substrate. The patterning process can be implemented serially with sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2016