Macroscopic highly aligned DNA nanowires created by controlled evaporative self-assembly.

نویسندگان

  • Bo Li
  • Wei Han
  • Myunghwan Byun
  • Lei Zhu
  • Qingze Zou
  • Zhiqun Lin
چکیده

By subjecting DNA aqueous solution to evaporate in a curve-on-flat geometry that was composed of either a spherical lens or a cylindrical lens situated on a flat substrate, a set of highly aligned DNA nanowires in the forms of spokes and parallel stripes over a macroscopic area (i.e., millimeter scale) were successfully created. The DNA molecules were stretched and aligned on polymer-coated substrate by the receding meniscus. The imposed curve-on-flat geometry provided a unique environment for controlling the flow within the evaporating solution by eliminating temperature gradient and possible convective instability and, thus, regulated the formation of DNA nanowires. Such controlled evaporative self-assembly is remarkably easy to implement and opens up a new avenue for crafting large-scale DNA-based nanostructures in a simple and cost-effective manner, dispensing with the need for lithography techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-enabled self-assembly of large-scale aligned nanowires.

One-dimensional nanowires enable the realization of optical and electronic nanodevices that may find applications in energy conversion and storage systems. Herein, large-scale aligned DNA nanowires were crafted by flow-enabled self-assembly (FESA). The highly oriented and continuous DNA nanowires were then capitalized on either as a template to form metallic nanowires by exposing DNA nanowires ...

متن کامل

Hierarchically ordered structures enabled by controlled evaporative self-assembly.

Hierarchical structures are common in both nature and technology. In the latter context, controlling the spatial arrangement of components over multiple length scales (i.e., forming hierarchically ordered structures) is highly desirable for many applications, such as lab-on-a-chip devices, integrated circuits, and microelectromechanical systems (MEMSs). [ 1 ] Most hierarchically ordered structu...

متن کامل

Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil–Water–Air Interface

One-dimensional nanomaterials and their assemblies attract considerable scientific interest in the physical, chemical, and biological fields because of their potential applications in electronic and optical devices. The interfaceassembly method has become an important route for the self-assembly of nanoparticles, nanosheets, nanotubes, and nanorods, but the self-assembly of ultralong nanowires ...

متن کامل

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires

A DNA nanostructure consisting of four four-arm junctions oriented with a square aspect ratio was designed and constructed. Programmable self-assembly of 4 x 4 tiles resulted in two distinct lattice morphologies: uniform-width nanoribbons and two-dimensional nanogrids, which both display periodic square cavities. Periodic protein arrays were achieved by templated self-assembly of streptavidin o...

متن کامل

A nanoscale combing technique for the large-scale assembly of highly aligned nanowires.

The controlled assembly of nanowires is a key challenge in the development of a range of bottom-up devices. Recent advances in the post-growth assembly of nanowires and carbon nanotubes have led to alignment ratios of 80-95% for a misalignment angle of ±5° (refs 5, 12, , 14) and allowed various multiwire devices to be fabricated. However, these methods still create a significant number of cross...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2013