In situ production of ash in pyroclastic flows

نویسندگان

  • J. Dufek
  • M. Manga
چکیده

[1] Abrasion and comminution of pumice clasts during the propagation of pyroclastic flows have long been recognized as a potential source for the enhanced production of volcanic ash, however, their relative importance has eluded quantification. The amount of ash produced in situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional and frictional production of ash that may occur during different regimes of pyroclastic flow transport. Ash produced in these experiments is predominately 10–100 microns in size and has similar morphology to tephra fall ash from Plinian events. We find that collisional ash production rates are proportional to the square of impact velocity. Frictional ash production rates are a linear function of the velocity of the basal, particle-enriched bed load region of these flows. Using these laboratory experiments we develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We find that for most flow conditions, 10–20% of the initial clasts comminute into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. On level terrain, collisionally and frictionally produced ash generates gravity currents that detach from the main flow and can more than double the effective runout distance of these flows. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed load. Flows that descend steep slopes produce the majority of their ash in the collisonally dominant flow head and flow snouts likely develop subangular to rounded pumice during this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador

The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpret...

متن کامل

Granular mass flows and Coulomb’s friction in shear cell experiments: Implications for geophysical flows

[1] Granular mass flows of rock fragments are studied in the lab by means of a high-speed video camera at 2000 frames per second. These granular flows are generated using beds of pumice fragments positioned on a rough rotating disk, whose angular velocity is controlled by a motor. The experimental apparatus allows an understanding of the arrangement of the particles in granular mass flows with ...

متن کامل

Numerical models of caldera-scale volcanic eruptions on Earth, venus, and Mars.

Volcanic eruptions of gassy magmas on Earth, Venus, and Mars produce plumes with markedly different fluid dynamics regimes. In large part the differences are caused by the differing atmospheric pressures and ratios of volcanic vent pressure to atmospheric pressure. For each of these planets, numerical simulations of an eruption of magma containing 4 weight percent gas were run on a workstation....

متن کامل

Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

BACKGROUND The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. AIMS To conduct toxico...

متن کامل

Zeolites in Pyroclastic Deposits in Southeastern Tenerife (canary Islands)

-The chemical and the mineralogical composition of a group of pumiceous tufts associated with recent salic volcanic episodes from Tenerife (Canary Islands) have been studied. The investigation focused on the two main types of pyroclastic deposits of the zone: ash-flows and ash-falls. The samples can be classified chemically as trachytic and phonolitic rocks with an intermediate silica content a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008