Minimization of an M-convex Function

نویسنده

  • Akiyoshi Shioura
چکیده

We study the minimization of an M-convex function introduced by Murota. It is shown that any vector in the domain can be easily separated from a minimizer of the function. Based on this property, we develop a polynomial time algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem

M-convex functions, introduced by Murota (1996, 1998), enjoy various desirable properties as “discrete convex functions.” In this paper, we propose two new polynomial-time scaling algorithms for the minimization of an M-convex function. Both algorithms apply a scaling technique to a greedy algorithm for M-convex function minimization, and run as fast as the previous minimization algorithms. We ...

متن کامل

Scaling Algorithms for M - convex Function Minimization

M-convex functions have various desirable properties as convexity in discrete optimization. We can find a global minimum of an M-convex function by a greedy algorithm, i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling technique to a greedy algorithm and propose an efficient algorithm for the minimization of an M-convex function. Computational result...

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

M-Convex Function Minimization by Continuous Relaxation Approach: Proximity Theorem and Algorithm

The concept of M-convexity for functions in integer variables, introduced by Murota (1995), plays a primary role in the theory of discrete convex analysis. In this paper, we consider the problem of minimizing an M-convex function, which is a natural generalization of the separable convex resource allocation problem under a submodular constraint and contains some classes of nonseparable convex f...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 84  شماره 

صفحات  -

تاریخ انتشار 1998