Generic Constructions of Parallel Key-Insulated Encryption: Stronger Security Model and Novel Schemes
نویسندگان
چکیده
Exposure of a secret key is a significant threat in practice. As a notion of security against key exposure, Dodis et al. advocated key-insulated security, and proposed concrete key-insulated encryption (KIE) schemes in which secret keys are periodically updated by using a physically “insulated” helper key. For significantly reducing possibility of exposure of the helper key, Hanaoka et al. further proposed the notion of parallel KIE (PKIE) in which multiple helper keys are used in alternate shifts. They also pointed out that in contrast to the case of the standard KIE, PKIE cannot be straightforwardly obtained from identity-based encryption (IBE). In this paper, we first discuss that previous security models for PKIE are somewhat weak, and thus re-formalize stronger security models for PKIE. Then we clarify that PKIE can be generically constructed (even in the strenghthened security models) by using a new primitive which we call one-time forward secure public key encryption (OTFS-PKE) and show that it is possible to construct OTFS-PKE from arbitrary IBE or hierarchical IBE (without degenerating into IBE). By using our method, we can obtain various new PKIE schemes which yield desirable properties. For example, we can construct first PKIE schemes from lattice or quadratic residuosity problems (without using bilinear maps), and PKIE with short ciphertexts and cheaper computational cost for both encryption and decryption. Interestingly, the resulting schemes can be viewed as the partial solutions to the open problem left by Libert, Quisquarter and Yung in PKC’07.
منابع مشابه
Authenticated Key-Insulated Public Key Encryption and Timed-Release Cryptography
In this paper we consider two security notions related to Identity Based Encryption: Key-insulated public key encryption, introduced by Dodis, Katz, Xu and Yung; and Timed-Release Public Key cryptography, introduced independently by May and Rivest, Shamir and Wagner. We first formalize the notion of secure timed-release cryptography, and show that, despite several differences in its formulation...
متن کاملChosen-Ciphertext Security of Multiple Encryption
Encryption of data using multiple, independent encryption schemes (“multiple encryption”) has been suggested in a variety of contexts, and can be used, for example, to protect against partial key exposure or cryptanalysis, or to enforce threshold access to data. Most prior work on this subject has focused on the security of multiple encryption against chosen-plaintext attacks, and has shown con...
متن کاملTimed-Release and Key-Insulated Public Key Encryption
In this paper we consider two security notions related to Identity Based Encryption: Key-insulated public key encryption, introduced by Dodis, Katz, Xu and Yung; and Timed-Release Public Key cryptography, introduced independently by May and Rivest, Shamir and Wagner. We first formalize the notion of secure timed-release public key encryption, and show that, despite several differences in its fo...
متن کاملBounded-Collusion Identity-Based Encryption from Semantically-Secure Public-Key Encryption: Generic Constructions with Short Ciphertexts
Identity-based encryption (IBE) is a special case of public-key encryption where user identities replace public keys. Every user is given a corresponding secret key for decryption, and encryptions for his or her identity must remain confidential even to attackers who learn the secret keys associated with other identities. Several IBE constructions are known to date, but their security relies on...
متن کاملIntegrated PKE and PEKS - Stronger Security Notions and New Constructions
In this paper we investigate the security for integrated public-key encryption (PKE) and public-key encryption with keyword search (PEKS) schemes. We observe that the security notions for integrated PKE and PEKS schemes considered in the existing literature are not strong enough to capture practical attacks, thus define a new notion named joint CCA-security which is shown to be stronger than th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010