First principles calculation of inhomogeneous broadening in solid-state cw-EPR spectroscopy.

نویسندگان

  • Hossam Elgabarty
  • Milian Wolff
  • Adrian Glaubitz
  • Dariush Hinderberger
  • Daniel Sebastiani
چکیده

We present a scheme for the first-principles calculation of EPR lineshapes for continuous-wave-EPR spectroscopy (cw-EPR) of spin centers in complex chemical environments. We specifically focus on poorly characterized systems, e.g. powders and frozen glasses with variable microsolvation structures. Our approach is based on ab initio molecular dynamics simulations and ab initio calculations of the ensemble of g- and A-tensors along the trajectory. The method incorporates temperature effects as well as the full anharmonicity of the intra- and intermolecular degrees of freedom of the system. We apply this scheme to compute the lineshape of a prototypical spin probe, the nitrosodisulfonate dianionic radical (Fremy's salt), dissolved in a 50 : 50 mixture of water and methanol. We are able to determine the specific effect of variations of local solvent composition and microsolvation structure on the cw-EPR lineshape. Our molecular dynamics reveal a highly anisotropic solvation structure with distinct spatial preferences for water and methanol around Fremy's salt that can be traced back to a combination of steric and polar influences. The overall solvation structure and conformational preferences of Fremy's salt as found in our MD simulations agree very well with the results obtained from EPR and orientation-selective ENDOR spectroscopy performed on the frozen glass. The simulated EPR lineshapes show good agreement with the experimental spectra. When combined with our MD results, they characterize the lineshape dependence on local morphological fluctuations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance.

Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-ruler...

متن کامل

Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules

Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...

متن کامل

First principles theory of the EPR g - tensor in solids : E ′ 1 defect in quartz

A theory for the reliable prediction of the EPR g-tensor for paramagnetic defects in solids is presented. It is based on density functional theory and on the gauge including projector augmented wave (GIPAW) approach to the calculation of all-electron magnetic response. The method is validated by comparison with existing quantum chemical and experimental data for a selection of diatomic radicals...

متن کامل

Time - Resolved EPR and Fourier Transform EPR Study of Triplet Ca . Determinations of the l 3 C Hyperfine Coupling Constant

Continuous wave (CW) and time-resolved (TR) EPR spectra of triplet Cao with partial and full 13C enrichment in methylcyclohexane solutions after UV irradiation were obtained. Line broadening from 1% satellites was observed. The I3C hyperfine coupling constant was determined to be 0.06 G. Fourier transform EPR (FTEPR) experiments with a resolution of 20 ns were carried out, and TI was found to b...

متن کامل

Heterogeneity of protein substates visualized by spin-label EPR.

The energy landscape of proteins is characterized by a hierarchy of substates, which give rise to conformational heterogeneity at low temperatures. In multiply spin-labeled membranous Na,K-ATPase, this heterogeneous population of conformations is manifest by strong inhomogeneous broadening of the electron paramagnetic resonance (EPR) line shapes and nonexponential spin-echo decays, which underg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 38  شماره 

صفحات  -

تاریخ انتشار 2013