Semiparametric transformation models for multiple continuous biomarkers in ROC analysis.

نویسندگان

  • Eunhee Kim
  • Donglin Zeng
  • Xiao-Hua Zhou
چکیده

Recent technological advances continue to provide noninvasive and more accurate biomarkers for evaluating disease status. One standard tool for assessing the accuracy of diagnostic tests is the receiver operating characteristic (ROC) curve. Few statistical methods exist to accommodate multiple continuous-scale biomarkers in the framework of ROC analysis. In this paper, we propose a method to integrate continuous-scale biomarkers to optimize classification accuracy. Specifically, we develop semiparametric transformation models for multiple biomarkers. We assume that unknown and marker-specific transformations of biomarkers follow a multivariate normal distribution. Our models accommodate biomarkers subject to limits of detection and account for the dependence among biomarkers by including a subject-specific random effect. We also propose a diagnostic measure using an optimal linear combination of the transformed biomarkers. Our diagnostic rule does not depend on any monotone transformation of biomarkers and is not sensitive to extreme biomarker values. Nonparametric maximum likelihood estimation (NPMLE) is used for inference. We show that the parameter estimators are asymptotically normal and efficient. We illustrate our semiparametric approach using data from the Endometriosis, Natural History, Diagnosis, and Outcomes (ENDO) study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Semiparametric, Parametric, and Nonparametric ROC Analysis for Continuous Diagnostic Tests Using a Simulation Study and Acute Coronary Syndrome Data

We aimed to compare the performance of three different individual ROC methods (one from each of the broad categories of parametric, nonparametric and semiparametric analysis) for assessing continuous diagnostic tests: the binormal method as a parametric method, an empirical approach as a nonparametric method, and a semiparametric method using generalized linear models (GLM). We performed a simu...

متن کامل

Comparison of correlated receiver operating characteristic curves derived from repeated diagnostic test data.

RATIONAL AND OBJECTIVES It is common to administer the same diagnostic test more than once to the same set of patients. The purpose of this study was to develop two statistical methods for estimating and comparing correlated receiver operating characteristic (ROC) curves for data derived from repeated diagnostic tests. MATERIAL AND METHODS Parametric and semiparametric transformation models w...

متن کامل

Semiparametric Inferential Procedures for Comparing Multivariate Roc Curves with Interaction Terms

Multivariate ROC curve models that include an interaction term between biomarker type and false positive rate are important in comparative biomarker studies, because such interaction allows ROC curves of different biomarkers to cross each other. However, there has been limited work in drawing inference for comparing multivariate ROC curves, especially when interaction terms are present. In this...

متن کامل

A Semiparametric Approach for the Covariate Specific Roc Curve with Survival Outcome

Abstract: The receiver operating characteristic (ROC) curve has been extended to survival data recently, including the nonparametric approach by Heagerty, Lumley and Pepe (2000) and the semiparametric approach by Heagerty and Zheng (2005) using standard survival analysis techniques based on two different time-dependent ROC curve definitions. However, both approaches do not involve covariates ot...

متن کامل

Cox and Frailty Models for Analysis of Esophageal Cancer Data‎

‎By existing censor and skewness in survival data‎, ‎some models such as weibull are used to analyzing survival data‎. ‎In addition, parametric and semiparametric models can be obtained from baseline hazard function of Cox model to fit to survival data‎. ‎However these models are popular because of their simple usage but do not consider unknown risk factors‎, ‎that's why cannot introduce the be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2015