CS 2429 - Foundations of Communication Complexity Lecture # 8 : 7 November 2012 Lecturer : Lila Fontes

نویسنده

  • Lila Fontes
چکیده

Today we’ll cover some recent results from the paper Lower bounds on information complexity via zero-communication bounds and applications by Kerenidis, Laplante, Lerays, Roland, and Xiao (FOCS 2012). We’ll also recall results covered in past lectures from the papers The partition bound for classical communication complexity and query complexity by Jain and Klauck (CCC 2010) and How to compress interactive communication by Barak, Braverman, Chen, and Rao.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 2429 - Foundations of Communication Complexity Lecture # 7 : 31 October 2012 Lecturer : Lila Fontes

Another important technique for proving lower bounds in communication complexity comes from information theory. In Information Complexity and the Direct Sum Problem for Simultaneous Message Complexity (FOCS 2001), Chakrabarti, Shi, Wirth, and Yao introduced the notion of information complexity and used it to prove new lower bounds on the direct sum of the equality function. Follow-up work by Ba...

متن کامل

CS 2429 - Foundations of Communication Complexity Lecturer : Toniann Pitassi 1 Applications of Communication Complexity

1 Applications of Communication Complexity There are many applications of communication complexity. In our survey article, ”The Story of Set Disjointness” we give many applications via reductions to set disjointness (both 2-party as well as NOF model). Applications discussed in our survey article: (1.) Streaming (2.) Data Structures (3.) Circuit Complexity (4.) Proof Complexity (5.) Game Theory...

متن کامل

CS 2429 - Foundations of Communication Complexity Lecturer : Toniann Pitassi

• The worst case running time P on input (x, y) is the maximum number of bits communicated over all choices of the random strings rA and rB. The worst case cost of P is the maximum, over all inputs (x, y), of the worst case running time of P on (x, y). • The average case running time P on input (x, y) is the expected number of bits communicated over all choices of the random strings rA and rB. ...

متن کامل

CS 2429 - Foundations of Communication Complexity Lecturer : Mika Göös

Here, a linear program on variables x1, . . . , xn, y1, . . . , ym expresses F if the feasible set of the program projects onto F as we ignore the variables y1, . . . , ym. Whenever one can express the polytope F as a polynomial sized LP (sometimes called an extended formulation for F ), one can solve linear optimization problems on F in polynomial time using any of the polynomial-time LP solve...

متن کامل

CS 2429 - Foundations of Communication Complexity

Linear programming is a very powerful tool for attacking hard combinatorial optimization problems. Methods such as the ellipsoid algorithm have shown that linear programming is solvable in polynomial time. Linear programming also plays a central role in the design of approximation algorithms. In fact, it is known that linear programming is P-complete, and this implies that if NP = P then for ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012