Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite discs.

نویسندگان

  • M Sigalov
  • E O Kamenetskii
  • R Shavit
چکیده

Magnetic-dipolar-mode (MDM) oscillations in a quasi-2D ferrite disc show unique dynamical symmetry properties resulting in the appearance of topologically distinct structures. Based on the magnetostatic (MS) spectral problem solutions, in this paper we give evidence for eigen-MS power-flow-density vortices in a ferrite disc. Due to these circular eigen-power flows, the MDMs are characterized by MS energy eigenstates. It becomes evident that the reason for stability of the vortex configurations in saturated ferrite samples is completely different from the nature of stability in magnetically soft cylindrical dots. We found a clear correspondence between analytically derived MDM vortex states and numerically modeled electromagnetic vortices in quasi-2D ferrite discs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons

A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known as a polariton. Such a state is the result of the mixing of a photon with the excitation of a material. The most discussed types of polaritons are phonon polaritons, exciton polaritons, and surface-plasmon polaritons. Recently, it was shown that, in microwaves, strong magnon-photon ...

متن کامل

Manipulating microwaves with magnetic-dipolar-mode vortices

There has been a surge of interest in the subwavelength confinement of electromagnetic fields. It is well known that, in optics, subwavelength confinement can be obtained from surface plasmon (quasielectrostatic) oscillations. In this article, we propose to realize subwavelength confinement in microwaves by using dipolarmode (quasimagnetostatic) magnon oscillations in ferrite particles. Our stu...

متن کامل

Quantum confinement of magnetic-dipolar oscillations in ferrite discs

Because of confinement phenomena, semiconductorquantum dots show typical atomic properties such as discrete energy levels and shell structures. The energy eigenstates are described based on the Schrödinger-like equation for the electronic envelope wavefunctions. From the point of view of fundamental studies, the reduction of dimensionality in microwave ferrites brings into play new effects, whi...

متن کامل

Fano resonances of microwave structures with embedded magneto-dipolar quantum dots

Long range dipole-dipole correlation in a ferromagnetic sample can be treated in terms of collective excitations of the system as a whole. Ferrite samples with linear dimensions smaller than the dephasing length, but still much larger than the exchange-interaction scales, are mesoscopic structures. Recently, it was shown that mesoscopic quasi-2D ferrite disks, distinguishing by multiresonance m...

متن کامل

Microwave magnetoelectric fields and their role in the matter-field interaction.

We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2009