Computing the rank of elliptic curves over real quadratic number fields of class number 1

نویسندگان

  • John Cremona
  • P. Serf
چکیده

In this paper we describe an algorithm for computing the rank of an elliptic curve defined over a real quadratic field of class number one. This algorithm extends the one originally described by Birch and Swinnerton-Dyer for curves over Q. Several examples are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Descent by 3-isogeny and 3-rank of quadratic fields

In this paper families of elliptic curves admitting a rational isogeny of degree 3 are studied. It is known that the 3-torsion in the class group of the field defined by the points in the kernel of such an isogeny is related to the rank of the elliptic curve. Families in which almost all the curves have rank at least 3 are constructed. In some cases this provides lower bounds for the number of ...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999