Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Our purpose was to compare diffusion tensor MR and magnetization transfer imaging in assessing normal-appearing white matter (WM) regions in multiple sclerosis (MS). METHODS Diffusion tensor, magnetization transfer, and conventional MR imaging were performed in 12 patients with MS. Fractional anisotropy, apparent diffusion coefficients (ADCs), and magnetization transfer ratios (MTRs) were measured in plaques, normal-appearing periplaque WM (PWM) regions, and normal-appearing WM regions remote from plaques. Mean fractional anisotropy, ADCs, and MTRs were calculated and compared in WM regions. RESULTS Fractional anisotropy was lower in normal-appearing PWM regions than in remote WM regions (P <.001) but higher than in plaques (P <.001). MTRs were lower (not significantly, P =.19) in normal-appearing PWM regions than in remote regions. MTRs were higher in normal-appearing PWM regions than in plaques (P <.001). ADCs were higher in normal-appearing PWM regions than in remote regions (P =.008) but lower than in plaques (P =.001). Correlation between fractional anisotropy and MTRs of individual lesions was poor (r = 0.18) and between fractional anisotropy and ADC, modest (r = -0.39). CONCLUSION In MS, diffusion tensor MR imaging can depict differences between WM regions that are not apparent on conventional MR images. Anisotropy measurements may be more sensitive than those of MTRs in detecting subtle abnormalities in PWM.
منابع مشابه
The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)
Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملDiffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica.
BACKGROUND AND PURPOSE Normal-appearing brain tissue (NABT) damage was established in multiple sclerosis by histology, MR spectroscopy, magnetization transfer imaging and diffusion tensor imaging (DTI). However, whether this phenomenon can be detected in relapsing neuromyelitis optica (RNMO) remains unclear. The aim of this study was to use DTI to investigate the presence of NABT damage in RNMO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2001