Implication of PI3K-dependent HSP27 and p53 expression in mild heat shock-triggered switch of metabolic stress-induced necrosis to apoptosis in A549 cells.
نویسندگان
چکیده
Previously, we showed that mild heat shock modulates patterns of cell death in response to glucose deprivation (GD), a common characteristic of the tumor microenvironment, by switching necrosis to apoptosis through ERK-dependent suppression of reactive oxygen species production in A549 cells. In the present study, we further examined the molecular mechanism underlying mild heat shock-induced necrosis-to-apoptosis switch. We examined the possible implication of p53 and heat shock proteins (HSPs) in the mechanism. Inhibition of p53 by pifithrin-alpha or p53 siRNA markedly suppressed apoptosis induced by heat shock/GD. On the other hand, silencing of HSP27, but not of HSP70, reversed heat shock/GD-induced apoptosis to necrosis, and HSP27 overexpression suppressed GD-induced necrosis. We further demonstrate that mild heat shock activated AKT and ERK1/2 through phosphorylation. Prevention of PI3K by LY294002 blocked heat shock/GD-induced apoptosis without reversing the cell death mode to necrosis, while inhibition of MEK1/2 by U0126 reversed heat shock/GD-induced apoptosis to necrosis, indicating a different role(s) of PI3K and ERK1/2 in heat shock/GD-induced cell death mode determination. We also found that mild heat shock increased HSP27 and p53 protein levels dependent on PI3K and suppressed the GD-induced increase in RIPA-insoluble HSP27 and p53 protein levels dependent on PI3K and ERK1/2. In conclusion, these results indicate that PI3K-dependent HSP27 and p53 induction and PI3K- and ERK1/2-dependent inhibition of the GD-induced increase in RIPA-insoluble HSP27 and p53 protein levels by heat play a key role(s) in heat shock-mediated switch of GD-induced necrosis to apoptosis.
منابع مشابه
Dendrosomal Nanocurcumin Induces Changes in the Expression Levels of Heat Shock Proteins in the AGS Cell Line: Cellular Tolerance or Smart Apoptosis Induction
Objectives:The expression levels of heat shock proteins (HSPs) are elevated in many cancers, and this overexpression is often associated with both a poor survival and a therapeutic outcome. Curcumin is an anti-cancer agent that also induces a heat shock response. HSPs confer resistance to curcumin-induced apoptosis in cancerous cells. The aim of the current study was to analyze variations in th...
متن کاملHyperthermia switches glucose depletion-induced necrosis to apoptosis in A549 lung adenocarcinoma cells.
Both cellular and clinical studies have shown that hyperthermia is one of the most potent sensitizers for the action of ionizing radiation. Although hyperthermic improvement in clinical outcome is suggested to be linked to its ability to induce cell cycle arrest and apoptosis, and to activate the immune system and to cause increases in blood flow and tumor oxygenation, the mechanism behind this...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملHsp27 modulates p53 signaling and suppresses cellular senescence.
The small heat shock protein Hsp27 is expressed at high levels in many tumors and provides protection against anticancer drugs. Here, we show that expression of recombinant Hsp27 at elevated levels leads to protection of MCF10A human mammary epithelial cells from doxorubicin. The protection was associated with suppression of the doxorubicin-induced senescence, where Hsp27 inhibited p53-mediated...
متن کاملHyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition
Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2010