Three Dimensional Effects in Tokamaks – How Tokamaks Can Benefit From Stellarator Research
نویسندگان
چکیده
The paper deals with three dimensional effects in tokamaks that can be approximated by slowly varying 3d equilibria so that their theoretical description and corresponding code developments can benefit from stellarator research. We investigate the effect of magnetic field ripple and perturbation fields (magnetic islands, external coils) on fast particle orbits in ITER and ASDEX Upgrade equilibria. – The coupling of the plasma perturbation to realistic tokamak wall structures introduces 3d elements into the treatment of Resistive Wall Modes (RWMs). We have developed and successfully benchmarked a RWM code allowing for 3d plasma equilibria and wall geometries. We show that for realistic wall structures the 3d effects remove the degeneracy of +/-n modes and can give rise to significant coupling of modes with different toroidal mode number n. – Kinetic damping of RWMs by plasma rotation is investigated in the low rotation regime relevant for ITER and DEMO. It is found that the inclusion of drift wave physics results in an increased damping for plasma rotation velocities in the range of the diamagnetic frequency due to the resonant excitation of electrostatic plasma waves.
منابع مشابه
Collisionless dynamics of zonal flows in stellarator geometry
The collisionless time evolution of zonal flows in stellarator systems is investigated. An analytical solution of the kinetic and quasineutrality equations describing the residual zonal flow is derived for arbitrary three-dimensional systems without approximations in the magnetic geometry. The theory allows for an arbitrary number of particle species. It has been found that in stellarators the ...
متن کاملWhat is a stellarator?*
A stellarator is a toroidal plasma confinement concept that uses effects that arise in the absence of toroidal symmetry to maintain the magnetic configuration without the need for current drive. The largest magnetic fusion machines under construction are stellarators, and the plasma parameters achieved in stellarators are second only to those in tokamaks. Stellarators are poised for rapid progr...
متن کاملControlling turbulence in present and future stellarators.
Turbulence is widely expected to limit the confinement and, thus, the overall performance of modern neoclassically optimized stellarators. We employ novel petaflop-scale gyrokinetic simulations to predict the distribution of turbulence fluctuations and the related transport scaling on entire stellarator magnetic surfaces and reveal striking differences to tokamaks. Using a stochastic global-sea...
متن کاملUWFDM-1324 Nuclear Challenges and Progress in Designing Stellarator Power Plants
Over the past 2-3 decades, stellarator power plants have been studied in the U.S., Europe, and Japan as an alternate to the mainline magnetic fusion tokamaks, offering steady state operation and eliminating the risk of plasma disruptions. The earlier 1980s studies suggested large stellarators with an average major radius exceeding 20 m. The most recent development of the compact stellarator con...
متن کاملNew Understanding of Tokamak Plasma Response to 3D Magnetic Fields
The performance of both present and future tokamaks such as ITER can be greatly degraded or enhanced by small 3D magnetic perturbations. An important new tool for understanding 3D magnetic field effects in tokamaks is the Ideal Perturbed Equilibrium Code (IPEC), which computes 3D perturbed tokamak equilibria including plasma response effects such as poloidal harmonic coupling, shielding, and am...
متن کامل