Proximity of the U12 snRNA with both the 5' splice site and the branch point during early stages of spliceosome assembly.
نویسندگان
چکیده
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.
منابع مشابه
U6atac snRNA stem-loop interacts with U12 p65 RNA binding protein and is functionally interchangeable with the U12 apical stem-loop III
Formation of catalytic core of the U12-dependent spliceosome involves U6atac and U12 interaction with the 5' splice site and branch site regions of a U12-dependent intron, respectively. Beyond the formation of intermolecular helix I region between U6atac and U12 snRNAs, several other regions within these RNA molecules are predicted to form stem-loop structures. Our previous work demonstrated th...
متن کاملCharacterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway.
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the S...
متن کاملtrans-splicing to spliceosomal U2 snRNA suggests disruption of branch site-U2 pairing during pre-mRNA splicing.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved ...
متن کاملA U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5' cleavage site.
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, p...
متن کاملIdentification of an evolutionarily divergent U11 small nuclear ribonucleoprotein particle in Drosophila.
Previous reports suggested that U11, in contrast to U12 or other small nuclear (sn)RNAs of the U12-type spliceosome, might be either highly divergent or absent in Drosophila melanogaster. Affinity purification of Drosophila U12-containing complexes has led to the identification of the fly U11 snRNA, which contains a potential U12-type 5' splice-site-interacting sequence, but whose sequence and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2005