Kinetic arrest of crowded soft spheres in solvents of varying quality.

نویسندگان

  • E Stiakakis
  • D Vlassopoulos
  • B Loppinet
  • J Roovers
  • G Meier
چکیده

Crowded solutions of multiarm star polymers, representing model colloidal spheres with ultrasoft repulsive interactions, undergo a reversible gelation transition upon heating in solvents of intermediate quality (between good and Theta). This unusual phenomenon is due to the kinetic arrest of the swollen interpenetrating spheres at high temperatures, forming clusters, in analogy to the colloidal glass transition. In this work we demonstrate that the choice of the solvent has a dramatic effect on the gelation transition, because of the different degree of star swelling (at the same temperature) associated with the solvent quality. We construct a generic kinetic phase diagram for the gelation of different stars in different solvents (gelation temperature against effective volume fraction, phi) and propose a critical "soft sphere close packing" volume fraction phi(c) distinguishing the temperature-induced (for phiphi(c)) glass-like gelation. We conclude that appropriate selection of the solvent allows for manipulation of the sol-gel transition in such ultrasoft colloids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Reversible thermal gelation in soft spheres.

Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at high temperatures. A phase diagram analogous to that of sterically stabilized colloids is proposed.

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

Demixing of colloid-polymer mixtures in poor solvents.

The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing polymers is investigated using density functional theory. The colloidal particles are modeled as hard spheres and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The solvent is modeled as a two-component mixture of a primary solvent, rega...

متن کامل

Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures.

Density-functional theory (DFT) is applied to investigate the structural and thermodynamic properties of concentrated electrolyte and neutral component mixtures that are highly asymmetric in terms of both size and charge mimicking a crowded cellular environment. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002