Computational determination of the largest lattice polytope diameter

نویسندگان

  • Nathan Chadder
  • Antoine Deza
چکیده

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k) for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most ⌊(k +1)d/2⌋ and is achieved, up to translation, by a Minkowski sum of lattice vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice-Free Polytopes and Their Diameter

A convex polytope in real Euclidean space is lattice-free if it intersects some lattice in space exactly in its vertex set. Lattice-free polytopes form a large and computationally hard class, and arise in many combinatorial and algorithmic contexts. In this article, aane and combinatorial properties of such polytopes are studied. First, bounds on some invariants, such as the diameter and layer-...

متن کامل

On the diameter of lattice polytopes

In this paper we show that the diameter of a d-dimensional lattice polytope in [0, k]n is at most

متن کامل

The largest small Polytopes

The aim of this paper is the determination of the largest n-dimensional polytope with n+3 vertices of unit diameter. This is a special case of a more general problem Graham proposes in [2].

متن کامل

Minkowski Length of 3D Lattice Polytopes

We study the Minkowski length L(P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a...

متن کامل

The Contact Polytope of the Leech Lattice

The contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1,197,362,269,604,214,277,200 many facets in 232 orbits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2017