Understanding Infographics through Textual and Visual Tag Prediction

نویسندگان

  • Zoya Bylinskii
  • Sami Alsheikh
  • Spandan Madan
  • Adrià Recasens
  • Kimberli Zhong
  • Hanspeter Pfister
  • Frédo Durand
  • Aude Oliva
چکیده

We introduce the problem of visual hashtag discovery for infographics: extracting visual elements from an infographic that are diagnostic of its topic. Given an infographic as input, our computational approach automatically outputs textual and visual elements predicted to be representative of the infographic content. Concretely, from a curated dataset of 29K large infographic images sampled across 26 categories and 391 tags, we present an automated two step approach. First, we extract the text from an infographic and use it to predict text tags indicative of the infographic content. And second, we use these predicted text tags as a supervisory signal to localize the most diagnostic visual elements from within the infographic i.e. visual hashtags. We report performances on a categorization and multi-label tag prediction problem and compare our proposed visual hashtags to human annotations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Analysis of the Effect of Visual and Textual Information on the Health Information Perception of High School Girl Students in Tehran

Purpose: Information and information sources can be divided into three broad categories according to their nature or type: textual information (book, journal article, conference paper, dissertation, newspaper, etc.), visual information (infographic, photo, Cartoons, films, etc.) and audiovisual information. The purpose of this study is to determine the effect of reading textual information in c...

متن کامل

The Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning

In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...

متن کامل

Intent Tag Clouds: An Intentional Approach To Visual Text Analysis

Getting a quick impression of the author’s intention of a text is an task often performed. An author’s intention plays a major role in successfully understanding a text. For supporting readers in this task, we present an intentional approach to visual text analysis, making use of tag clouds. The objective of tag clouds is presenting meta-information in a visually appealing way. However there is...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Assessing Elements of Storytelling in Chinese e-Entrepreneur Giant Alibaba's Business Information Graphics

Alibaba Group is China’s largest e-commerce company and leader in e-business infographic publishing. This study attempts to understand how Alibaba’s infographics use texts, visual aids, and statistical graphics to facilitate understanding of their contents. A quantitative content analysis of its 460 infographics suggests that while Alibaba’s content preference aligns with its mission to educati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09215  شماره 

صفحات  -

تاریخ انتشار 2017