Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor
نویسندگان
چکیده
Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor encapsulation design field in the near future.
منابع مشابه
The Transformer Winding Temperature Monitoring System Based on Fiber Bragg Grating
High temperature is one of the important reasons causing the fire in power system. Therefore, the early warning could be told by monitoring the temperature and effective measures could be taken. The corresponding accidents will be reduced. The traditional transformer winding temperature monitoring methods are electrical signal measurement and infrared measurement. Such electrical signal sensors...
متن کاملSimultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier.
We propose and demonstrate a novel sensor by using a single-fiber Bragg grating that can simultaneously measure strain and temperature with the aid of an erbium-doped fiber amplifier. By using a linear variation in the amplified spontaneous emission power of the erbium-doped fiber amplifier with temperature, we determine the temperature. By subtracting the temperature effect from the fiber Brag...
متن کاملQuadratic behavior of fiber Bragg grating temperature coefficients.
We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 degrees C to 80 degrees C. The nonlinearity was observed to be a quadratic f...
متن کاملMeasurement of Temperature, Humidity and Strain Variation Using Bragg Sensor
Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the effic...
متن کاملUnique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating
In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...
متن کامل