Percolative core formation in planetesimals enabled by hysteresis in metal connectivity.
نویسندگان
چکیده
The segregation of dense core-forming melts by porous flow is a natural mechanism for core formation in early planetesimals. However, experimental observations show that texturally equilibrated metallic melt does not wet the silicate grain boundaries and tends to reside in isolated pockets that prevent percolation. Here we use pore-scale simulations to determine the minimum melt fraction required to induce porous flow, the percolation threshold. The composition of terrestrial planets suggests that typical planetesimals contain enough metal to overcome this threshold. Nevertheless, it is currently thought that melt segregation is prevented by a pinch-off at melt fractions slightly below the percolation threshold. In contrast to previous work, our simulations on irregular grain geometries reveal that a texturally equilibrated melt network remains connected down to melt fractions of only 1 to 2%. This hysteresis in melt connectivity allows percolative core formation in planetesimals that contain enough metal to exceed the percolation threshold. Evidence for the percolation of metallic melt is provided by X-ray microtomography of primitive achondrite Northwest Africa (NWA) 2993. Microstructural analysis shows that the metal-silicate interface has characteristics expected for a texturally equilibrated pore network with a dihedral angle of ∼85°. The melt network therefore remained close to textural equilibrium despite a complex history. This suggests that the hysteresis in melt connectivity is a viable process for percolative core formation in the parent bodies of primitive achondrites.
منابع مشابه
Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure
Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr(...
متن کاملOligarchic planetesimal accretion and giant planet formation
Aims. In the context of the core instability model, we present calculations of in situ giant planet formation. The oligarchic growth regime of solid protoplanets is the model adopted for the growth of the core. This growth regime for the core has not been considered before in full evolutionary calculations of this kind. Methods. The full differential equations of giant planet formation were num...
متن کاملImpact vaporization of planetesimal cores in the late stages of planet formation
Di erentiated planetesimals delivered iron-rich material to the Earth and Moon in high-velocity collisions at the end stages of accretion. The physical process of accreting this late material has implications for the geochemical evolution of the Earth–Moon system and the timing of Earth’s core formation1–3. However, the fraction of a planetesimal’s iron core that is vaporized by an impact is no...
متن کاملHighly depressed temperature-induced metal-insulator transition in synthetic monodisperse 10-nm V2O3 pseudocubes enclosed by {012} facets.
Monodisperse 10-nm V(2)O(3) pseudocubes enclosed by {012} facets were successfully synthesized for the first time via a novel and facile solvothermal method, offering the first opportunity to elucidate the effect of finite-size and facet on the temperature-induced reversible metal-insulator transition (MIT) behavior of V(2)O(3). Very excitingly, the transition temperature of these V(2)O(3) pseu...
متن کاملAccretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water
In order to test accretion simulations as well as planetary differentiation scenarios, we have integrated a multistage core–mantle differentiation model with N-body accretion simulations. Impacts between embryos and planetesimals are considered to result in magma ocean formation and episodes of core formation. The core formation model combines rigorous chemical mass balance with metal–silicate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 51 شماره
صفحات -
تاریخ انتشار 2017