Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution

نویسندگان

  • Yuzhou Zhang
  • Yue Jiao
  • Hengwu Jiao
  • Huabin Zhao
  • Yu-Xian Zhu
چکیده

WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.

The morphologically diverse bodies of seed plants comprising gymnosperms and angiosperms, which separated some 350 Ma, grow by the activity of meristems containing stem cell niches. In the dicot model Arabidopsis thaliana, these are maintained by the stem cell-promoting functions of WUS and WUSCHEL-related homeobox 5 (WOX5) in the shoot and the root, respectively. Both genes are members of the ...

متن کامل

The Essential Role of Cytokinin Signaling in Root Apical Meristem Formation during Somatic Embryogenesis

A commentary on Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis Plant tissue culture and subsequent organogenesis have been regarded as part of the scientific roots of modern plant biotechnology (Sussex, 2008). Establishments of shoot apical meristem (SAM) and root apical meristem (RAM) are critical steps for somati...

متن کامل

Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...

متن کامل

A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems

The niches of the Arabidopsis shoot and root meristems, the organizing center (OC) and the quiescent center (QC), orchestrate the fine balance of stem cell maintenance and the provision of differentiating descendants. They express the functionally related homeobox genes WUSCHEL (WUS) and WOX5, respectively, that promote stem cell fate in adjacent cells. Shoot stem cells signal back to the OC by...

متن کامل

Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation.

In legumes, the symbiotic nodules are formed as a result of dedifferentiation and reactivation of cortical root cells. A shoot-acting receptor complex, similar to the Arabidopsis (Arabidopsis thaliana) CLAVATA1 (CLV1)/CLV2 receptor, regulating development of the shoot apical meristem, is involved in autoregulation of nodulation (AON), a mechanism that systemically controls nodule number. The ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2017