Poisson commutator-anticommutator brackets for ray tracing and longitudinal imaging via geometric algebra

نویسندگان

  • Quirino M. Sugon
  • Daniel J. McNamara
چکیده

We use the vector wedge product in geometric algebra to show that Poisson commutator brackets measure preservation of phase space areas. We also use the vector dot product to define the Poisson anticommutator bracket that measures the preservation of phase space angles. We apply these brackets to the paraxial meridional complex height-angle ray vectors that transform via a 2×2 matrix, and we show that this transformation preserves areas but not angles in phase space. The Poisson brackets here are expressed in terms of the coefficients of the ABCD matrix. We also apply these brackets to the distance-height ray vectors measured from the input and output side of the optical system. We show that these vectors obey a partial Moebius transformation, and that this transformation preserves neither areas nor angles. The Poisson brackets here are expressed in terms of the transverse and longitudinal magnifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 19 96 Non - canonical Quantization of a Quadratic Constrained System ∗

We propose an alternative to Dirac quantization for a quadratic constrained system. We show that this solves the Jacobi identity violation problem occuring in the Dirac quantization case and yields a well defined Fock space. By requiring the uniqueness of the ground state, we show that for non-constrained systems, this approach gives the same results as Dirac quantization. After the formulation...

متن کامل

Paraxial meridional ray tracing equations from the unified reflection-refraction law via geometric algebra

We derive the paraxial meridional ray tracing equations from the unified reflection-refraction law using geometric algebra. This unified law states that the normal vector to the interface is a rotation of the incident ray or of the refracted ray or of the reflected ray by an angle equal to the angle of incidence or of refraction. We obtain the finite meridional ray tracing equations by simply e...

متن کامل

Nonlinear Reformulation of Heisenberg’s Dynamics

A structural similarity between Classical Mechanics (CM) and Quantum Mechanics (QM) was revealed by P.A.M. Dirac in terms of Lie Algebras: while in CM the dynamics is determined by the Lie algebra of Poisson brackets on the manifold of scalar fields for classical position/momentum observables Q/P , QM evolves (in Heisenberg’s picture) according to the formally similar Lie algebra of commutator ...

متن کامل

Quantum and Classic Brackets

We describe an p-mechanical (see funct-an/9405002 and quantph/9610016) brackets which generate quantum (commutator) and classic (Poisson) brackets in corresponding representations of the Heisenberg group. We do not use any kind of semiclassic approximation or limiting procedures for ~ → 0.

متن کامل

Performance and elegance of five models of 3D Euclidean geometry in a ray tracing application

Computations of 3D Euclidean geometry can be performed using various computational models of different effectiveness. In this paper we compare five alternatives: 3D linear algebra, 3D geometric algebra, a mix of 4D homogeneous coordinates and Plücker coordinates, a 4D homogeneous model using geometric algebra, and the 5D conformal model using geometric algebra. Higher dimensional models and mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008