Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics

نویسنده

  • M. J. Starink
چکیده

Differential scanning calorimetry (DSC) and isothermal calorimetry have been applied extensively to the analysis of light metals, especially Al based alloys. Isothermal calorimetry and differential scanning calorimetry are used for analysis of solid state reactions, such as precipitation, homogenisation, devitrivication and recrystallisation; and solid–liquid reactions, such as incipient melting and solidification, are studied by differential scanning calorimetry. In producing repeatable calorimetry data on Al alloys, sample preparation, reproducibility and baseline drift need to be considered in detail. Calorimetry can be used effectively to study the different solid state reactions and solid–liquid reactions that occur during the main processing steps of Al based alloys (solidification, homogenisation, precipitation). Also, devitrivication of amorphous and ultrafine grained Al based powders and flakes can be studied effectively. Quantitative analysis of the kinetics of reactions is assessed through reviewing the interrelation between activation energy analysis methods, equivalent time approaches, impingement parameter approaches, mean field models for precipitation, the Johnson–Mehl–Avrami–Kolmogorov model, as well as novel models which have not yet found application in calorimetry. Differential scanning calorimetry has occasionally been used in attempts to measure the volume fractions of phases present in Al based alloys, and attempts at determining volume fractions of intermetallic phases in commercial alloys and amounts of devitrified phase in glasses are reviewed. The requirements for the validity of these quantitative applications are also reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THERMAL ANALYSIS AND KINETICS OF THE PRECIPITATION IN WROUGHT Al-Mg, Al-Mg-ScAND Al-Mg-Sc-Me (Me=Zr, Ti) ALLOYS

Precipitation behaviour of wrought Al-6Mg alloys with ternary scandium and quaternary zirconium and titanium has been studied. Hardness measurements and resistivity studies are employed to assess the precipitation behaviour of scandium doped Al-6Mg alloy without or with quaternary additions of zirconium and titanium. Further, the kinetics of precipitations are studied by differential scanning c...

متن کامل

Kinetics of Fe2O3-Al reaction prior to mechanochemical synthesis of Fe3Al-Al2O3 nanocomposite powder using thermal analysis

The effect of ball milling on kinetics of the thermite reaction of 3Fe2O3 + 8Al powder mixture to synthesizeFe3Al-Al2O3 nanocomposite was investigated using differential thermal analysis. A model-free methodwas applied to the non-isothermal differential calorimetry (DSC) data to evaluate the reaction kineticsaccording to the Starink method. The activation energy of the thermit...

متن کامل

Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C...

متن کامل

Hydrolysis of semi mustard (S.M) by MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide catalyst: kinetics reactions study

MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide has been successfully prepared by precipitation method using cobalt nitrate and manganese nitrate as the precursors and then characterized by scanning electron microscopy-energy dispersive micro-analysis (SEM-EDX) and X-ray diffraction (XRD) techniques. In this work, we report the hydrolysis kinetics reactions of semi mustard (chloroethyl ethy...

متن کامل

Hydrolysis of semi mustard (S.M) by MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide catalyst: kinetics reactions study

MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide has been successfully prepared by precipitation method using cobalt nitrate and manganese nitrate as the precursors and then characterized by scanning electron microscopy-energy dispersive micro-analysis (SEM-EDX) and X-ray diffraction (XRD) techniques. In this work, we report the hydrolysis kinetics reactions of semi mustard (chloroethyl ethy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004