Effective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring

نویسندگان

  • Naixue Xiong
  • Ryan Wen Liu
  • Maohan Liang
  • Di Wu
  • Zhao Liu
  • Huisi Wu
چکیده

Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearized Alternating Direction Method for Constrained Linear Least-squares Problem

In this paper, we apply the alternating direction method (ADM) to solve a constrained linear least-squares problem where the objective function is a sum of two least-squares terms and the constraints are box constraints. Using ADM, we decompose the original problem into two easier least-squares subproblems at each iteration. To speed up the inner iteration, we linearize the subproblems whenever...

متن کامل

Linearized Alternating Direction Method of Multipliers for Constrained Linear Least-Squares Problem

The alternating direction method of multipliers (ADMM) is applied to a constrained linear least-squares problem, where the objective function is a sum of two least-squares terms and there are box constraints. The original problem is decomposed into two easier least-squares subproblems at each iteration, and to speed up the inner iteration we linearize the relevant subproblem whenever it has no ...

متن کامل

A Robust Alternating Direction Method for Constrained Hybrid Variational Deblurring Model

In this work, a new constrained hybrid variational deblurring model is developed by combining the non-convex firstand second-order total variation regularizers. Moreover, a box constraint is imposed on the proposed model to guarantee high deblurring performance. The developed constrained hybrid variational model could achieve a good balance between preserving image details and alleviating ringi...

متن کامل

Blind Image Deblurring Using Row-Column Sparse Representations

Blind image deblurring is a particularly challenging inverse problem where the blur kernel is unknown and must be estimated en route to recover the deblurred image. The problem is of strong practical relevance since many imaging devices such as cellphone cameras, must rely on deblurring algorithms to yield satisfactory image quality. Despite significant research effort, handling large motions r...

متن کامل

Handling Noise and Outliers in Single Image Deblurring using L0 Sparsity

Camera shake during exposure leads to image blur and poses an important problem in digital photography. Blind deconvolution recovers the sharp original image from a blurred image. MAP has been the most widely used deconvolution field but naive MAP methods mostly tends to favour no-blur solution. An intermediate representation of the image called unnatural representation has been found to the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017