Wavenet based low rate speech coding
نویسندگان
چکیده
Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generative model and show that approximating the signal waveform incurs a large rate penalty. Our experiments confirm the high performance of the WaveNet based coder and show that the speech produced by the system is able to additionally perform implicit bandwidth extension and does not significantly impair recognition of the original speaker for the human listener, even when that speaker has not been used during the training of the generative model.
منابع مشابه
Speaker-Dependent WaveNet Vocoder
In this study, we propose a speaker-dependent WaveNet vocoder, a method of synthesizing speech waveforms with WaveNet, by utilizing acoustic features from existing vocoder as auxiliary features of WaveNet. It is expected that WaveNet can learn a sample-by-sample correspondence between speech waveform and acoustic features. The advantage of the proposed method is that it does not require (1) exp...
متن کاملStatistical Voice Conversion with WaveNet-Based Waveform Generation
This paper presents a statistical voice conversion (VC) technique with the WaveNet-based waveform generation. VC based on a Gaussian mixture model (GMM) makes it possible to convert the speaker identity of a source speaker into that of a target speaker. However, in the conventional vocoding process, various factors such as F0 extraction errors, parameterization errors and over-smoothing effects...
متن کاملParallel WaveNet: Fast High-Fidelity Speech Synthesis
The recently-developed WaveNet architecture [27] is the current state of the art in realistic speech synthesis, consistently rated as more natural sounding for many different languages than any previous system. However, because WaveNet relies on sequential generation of one audio sample at a time, it is poorly suited to today’s massively parallel computers, and therefore hard to deploy in a rea...
متن کاملSpeech Enhancement Using Bayesian Wavenet
In recent years, deep learning has achieved great success in speech enhancement. However, there are two major limitations regarding existing works. First, the Bayesian framework is not adopted in many such deep-learning-based algorithms. In particular, the prior distribution for speech in the Bayesian framework has been shown useful by regularizing the output to be in the speech space, and thus...
متن کاملPerceptual audio loss function for deep learning
PESQ, Perceptual Evaluation of Speech Quality [5], and POLQA, Perceptual Objective Listening Quality Assessment [1] , are standards comprising a test methodology for automated assessment of voice quality of speech as experienced by human beings. The predictions of those objective measures should come as close as possible to subjective quality scores as obtained in subjective listening tests, us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.01120 شماره
صفحات -
تاریخ انتشار 2017