Lipschitz Functions with Maximal Clarke Subdi erentials Are Generic

نویسندگان

  • Jonathan M. Borwein
  • Xianfu Wang
چکیده

We show that on a separable Banach space most Lipschitz functions have maximal Clarke subdiierential mappings. In particular, the generic nonexpansive function has the dual unit ball as its Clarke subdiierential at every point. Diverse corollaries are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized subdi erentials: a Baire categorical approach

We use Baire categorical arguments to construct dramatically pathological locally Lipschitz functions. The origins of this approach can be traced back to Banach and Mazurkiewicz (1931) who independently used similar categorical arguments to show that \almost every continuous real-valued function deened on 0,1] is nowhere diierentiable". As with the results of Banach and Mazurkiewicz, it appears...

متن کامل

Ëùù««ööòøøøøøððøý Óó Ìýôô Blockin Blockinð Óòøøòùóù× Ùò Blockinøøóò×

Jonathan M. Borwein1, Xianfu Wang August 13, 1999 ABSTRACT. We prove a \typi al" subdi erentiability prin iple and apply it to a variety of omplete metri spa es of ontinuous fun tions on separable Bana h spa es; so as to obtain existen e of fun tions with maximal subdi erentials when ordered by in lusion. The relationship between ontinuous fun tions with maximal subdi erentials and nowhere mono...

متن کامل

Lipschitz functions with maximal Clarke subdifferentials are staunch

In a recent paper we have shown that most non-expansive Lipschitz functions (in the sense of Baire’s category) have a maximal Clarke subdifferential. In the present paper, we show that in a separable Banach space the set of non-expansive Lipschitz functions with a maximal Clarke subdifferential is not only of generic, but also staunch. 1991 Mathematics Subject Classification: Primary 49J52.

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998