Time-lapse image-domain tomography using adjoint-state methods

نویسندگان

  • Jeffrey Shragge
  • Tongning Yang
  • Paul Sava
چکیده

Adjoint-state methods (ASMs) have proven successful for calculating the gradients of the functionals commonly found in geophysical inverse problems. The 3D ASM imagedomain tomography (IDT) formulation of the seismic velocity estimation problem highlights imperfections in migrated image volumes and, using appropriate penalty functions (e.g., differential semblance), forms an objective function that can be minimized using standard optimization approaches. For time-lapse (4D) seismic scenarios, we show that the 3D ASM-IDT approach can be extended to multiple (e.g., baseline and monitor) data sets and offers high-quality estimates of subsurface velocity change. We discuss two different penalty operators that lead to absolute and relative 4D inversion strategies. The absolute approach uses the difference of two independent 3D inversions to estimate a 4D model perturbation (i.e., slowness squared). The relative approach inverts for the model perturbation that optimally matches the monitor image to the baseline image — even if migrated energy is imperfectly focused. Both approaches yield good 4D slowness estimates; however, we assert that the relative approach is more robust given the ubiquitous presence of nonrepeatable 4D acquisition noise and imperfect baseline model estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shot-domain 4D time-lapse velocity analysis using apparent image displacements

Hydrocarbon production modifies the stress conditions in the subsurface and changes the model parameters previously estimated from the prospect. The capability to remotely monitor the changes in the reservoir using seismic data has strategic importance since it allows us to infer fluid movement and evolution of stress conditions, which are key factors to enhance recovery and reduce uncertainty ...

متن کامل

Shot-domain 4D time-lapse seismic velocity analysis using apparent image displacements

Hydrocarbon production modifies the stress conditions in the subsurface and changes the model parameters previously estimated from the prospect. The capability to remotely monitor the changes in the reservoir using seismic data has strategic importance since it allows us to infer fluid movement and evolution of stress conditions, which are key factors to enhance recovery and reduce uncertainty ...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Time-lapse image-domain velocity analysis using adjoint-state methods

Adjoint-state methods (ASMs) have proven successful for calculating the gradients of the functionals commonly found in geophysical inverse problems. The 3D image-domain formulation of the seismic velocity estimation problem uses imperfections in 3D migrated images to form an objective function, which is minimized using a combined ASM plus line-search approach. While image-domain methods are les...

متن کامل

Image-domain wavefield tomography with extended common-image-point gathers

Waveform inversion is a velocity-model-building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image-domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013